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Dispersion, Roll and Aerodynamic Loading Predictions

for

AUSROC II

Summary

Estimates of flight dynamics and aerodynamics are used to provide information
applicable to the flight safety of the AUSROC II rocket prior to firing from Woomera.
Aerodynamic factors considered which affect range safety are flight path dispersion,
rolling motion, interaction of body bending with aerodynamic loading, and aerodynamic
load distribution on the fins. Predictions of flight path dispersion due to wind, fin
misalignment and thrust misalignment are made. Rolling motion due to fin misalignment
is estimated as a check for possible roll-yaw resonance. An approximation for the effect of
body stiffness on the interaction between body bending and aerodynamic loading is
derived. Simplified expressions for fin aerodynamic normal force distribution are
presented to assist in checking fin structural strength.
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1. Introduction

AUSROC II is a bi-propellant liquid fuelled rocket designed by engineering
students at Monash University as a final year project. This project has been reported in a
Monash University, Department of Mechanical Engineering Final Year Project Thesis
(1989) by Mark A. Blair and Peter Kantzos entitled "Design of a Bi-Propellant Liquid
Fuelled Rocket". The rocket has a body diameter of 0.25m, a length of 5.56m and is
capable of reaching a maximum altitude of around 20km. In order to test fly this rocket at
Woomera there are safety requirements which have to be met.

The purpose of this Report, which has been prepared under contract for WSRL, is
to provide information that will enable predictions to be made about the flight behaviour
of AUSROC II as far as range safety is concerned. The information is derived from
engineering estimates which allow reasonable checks on flight safety to be made when
precise details of a rocket are not known. Flight safety is achieved by maintaining the
rocket’s flight path within safe boundaries over the firing range and by avoiding high
angles of attack which could cause fracturing or break up of the rocket structure.

The main causes of deviation from the desired flight path are wind, deformation of
the fins, and misalignment between motor thrust and the longitudinal axis of symmetry.
Calculation of deviation arising from these three causes is carried out using methods
taken from the book entitled "Mathematical Theory of Rocket Flight" by authors Rosser,
Newton and Gross. Full details of these calculations are given in sections 2.1, 2.2, 2.3 and
can be also used as examples of how to interpret the book.

An estimation of roll rate is needed to check that there is no danger of roll-yaw
resonance leading to high angles of attack. This estimate is made in section 3 together with
initial roll history.

Another check which needs to be made is that the rocket body is stiff enough to
resist large magnification of aerodynamic loading due to body bending. A criterion which
relates this load magnification to body stiffness is derived in section 4.

To enable analysis of fin structural strength to be carried out, a simplified
procedure for calculating the normal aerodynamic force distribution on a fin at maximum
dynamic pressure is derived in section 5.

A summary of the results of the calculations carried out in this report is given in
section 6.
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2. Dispersion

The dispersion of a rocket is regarded as its deviation from some ideal flight path
due to such causes as wind, imperfections in manufacture, and launch disturbances.
Estimates of dispersion of the AUSROC rocket during boosted flight have been made
using the methods and tabulated functions given in the well-known book entitled
"Mathematical Theory of Rocket Flight" by authors Rosser, Newton and Gross,
published by Mc Graw-Hill in 1947 (Ref.1).

For AUSROC II, the ideal flight path is taken to be the computed particle trajectory
which takes account of aerodynamic drag and gravity. In reference (1) the equations of
motion for the rocket are simplified so that they can be solved analytically for angular
deviation and displacement of the dispersed flight path from the ideal one. These
simplified differential equations are linear and hence their particular solutions are
additive so that the combined effect of all causes of dispersion is the vector sum of the
effects from each individual cause. The simplifying assumptions are that aerodynamic
and gravitational forces can be ignored, leaving motor thrust as the sole motivating force
which, together with rocket acceleration, is assumed to be constant. The only
aerodynamics considered is the pitching or yawing moment which is assumed to have a
constant aerodynamic coefficient. These assumptions may appear to be pretty drastic but
it should be remembered that they need only be used to estimate perturbations about the
ideal trajectory and not to estimate the ideal trajectory itself. In practice, most of the
dispersion of an accelerating rocket, launched from rest, occurs in a relatively short part of
the flight path immediately after leaving the launcher. Thus, taking the required constant
values for the various rocket properties to be the launch values, will usually result in good
engineering estimates for dispersion.

A consequence of these assumptions is that the response of the rocket to a pitching
disturbance is to perform simple harmonic oscillations such that the wavelength with
respect to flight path distance is constant. For a given rocket, this wavelength is used to
non-dimensionalise flight path distance and launcher length. The analytic functions in
reference (1) are given in terms of these two non-dimensional variables.

It is obviously very important not to make errors in determining the direction of
the various components of dispersion. Thus we need to define some systems of axes and
to adopt a sign convention with regard to angles in a way that assures compatibility with
the formulae quoted in reference(1). The ideal trajectory for the rocket during boost, as
calculated by a particle trajectory computer program, is contained in a vertical plane. In
this plane, the positive x-axis is defined as the horizontal axis passing downrange from
the launcher. Looking downrange, the positive y-axis passes horizontally outwards to the
left from the launcher and is at right angles to the x-axis. The positive z-axis passes
vertically upwards from the launcher. Thus this x, y, z system of axes, with origin at the
launcher, is a fixed range system and forms a cyclic right-handed axes set. Note that in
explaining the treatment of dispersion due to crosswind, reference (1) describes these axes
in the order x,z,y,but there need be no confusion because these coordinates are not used in
the dispersion formulae. Defining the range-fixed unit vectors i, j, k, in the positive x, y, z
directions respectively, we have the standard cyclic order that gives:

 i x j = k j x k = I k x i = j
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Another axes system, which varies from point to point along the ideal trajectory,
will now be introduced. Take t to be the unit vector tangential to the flight path at any
point on the ideal trajectory and positive in the direction of flight. Let n be the unit vector
normal to t, lying in the vertical plane containing the ideal trajectory and taken to be
positive when it has an upward pointing component. Again j is the unit vector normal to t
and n ; taken as positive to the left of the flight path when looking downrange. Hence, the
vectors t , j , n , form a cyclic right-handed system similar to i , j , k .

ie: t x j =n j x n =t n x t =j .

The planes in which dispersion are measured can now be defined. Angles of
dispersion are deviations of the dispersed trajectory from the t direction, which is
tangential to the ideal trajectory. These angular deviations can occur in any direction and
accordingly are treated as vectors having two components at right angles. This treatment
does not normally hold for angular displacements, but is a close approximation when the
displacements are small angles of the first order: ie when Sinθ=θ and Cosθ=1 are
sufficiently accurate approximations. Thus an angular deviation θ from the t direction is
assumed to have two components, a component θv in the vertical t , n plane and a
component θs in the side t , j plane. Thus, the angular deviation about t can be considered
as the complex variable θv + iθs. Note that in reference (1) angular deviation θ is a
complex number but the subscripts v and s are not used. The sign conventions for θv and
θs are that θv is positive for an upwards deviation from t and negative for a downwards
deviation from t . θs is positive for a leftward sideways deviation from t and negative for
a rightward sideways deviation from t , looking downrange in both cases.

The definitions above are in accord with the dispersion formulae of reference (1)
and we are now in a position to carry out dispersion calculations without any ambiguity
concerning the direction of trajectory deviations.

The constants needed for making the calculations described in reference (1) will
now be determined for AUSROC. These are, the initial acceleration G, the effective
launcher length p, the launch velocity Vp and the wavelength in yaw σ.

Initial thrust T = 9810 N,

Initial mass m = 212 kg,

then G = T/m = 46.27 m/s2 (1)

The effective launcher length p is defined as the distance travelled by the centre of
gravity of the rocket from rest until the second lug is just clear of the launcher rail. The
value taken for AUSROC is:

p = 9.7 m.

 The launch velocity Vp is then found by putting:
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Vp2 = 2 G p

So that: Vp = 29.3 m/s2

 From reference (1), the wavelength in yaw or pitch, σ, is found from

σ2 =  4 I π2   (2)
 ρ d3 Km

where: I = 268 kgm2 (initial pitching moment of inertia)
ρ = 1.23 kg/m3 (air density at sea level)
d = 0.25 m (rocket body diameter)

Km is an aerodynamic pitching moment coefficient such that the aerodynamic
pitching moment about the rocket’s centre of gravity is given by:

M = ρ V2 d3 Km α

where α is the angle between the longitudinal axis of the rocket and the relative wind
direction. The more usual form, used in wind tunnel testing is:

 M = 0.125 ρ V2 π d3 (dCm/dα) α

Km = 0.125 π (dCm/dα)

The Aerodynamic Prediction Program of Guided Weapons Division predicts, for
AUSROC at subsonic speed:

dCm/dα = 89

hence: Km = 35

Substituting the above values into equation (2) gives:

σ = 125.4 m (3)

In reference (1), distance travelled along the flight path by the rocket’s centre of gravity is
denoted by s and the non-dimensional quantities related to effective launcher length p
and s are denoted by S and P respectively where:

S = 2 π s / σ = s / 20.0 (4)

 P = 2 π p / σ = 0.465  (5)

The rocket functions from which dispersion is calculated, are expressed in terms of
S and P in reference (1). Thus, to calculate dispersion at the end of burning an appropriate
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value for S is required. Subscript b is used to denote conditions at motor burnout, and
subscript p denotes conditions when the rocket just becomes clear of the launcher.

An approximate value for sb is found by assuming the motion during burning to
have a constant acceleration equal to the mean value. From the particle trajectory, the
rocket velocity at motor burnout, which is at 20 seconds, is given by Vb = 749 m/s so that
the mean acceleration is 37.45 m/s2, thus:

sb = 0.5 x 37.45 x 202 = 7490 m

 Sb = 7490 / 20.0 = 374.5 (6)

Angular dispersion is relatively insensitive to values of s greater than one
wavelength in yaw, as the rocket functions evaluated in reference (1) will show. The value
of sb for AUSROC is equivalent to about 60 wavelengths and will have a very small
influence on the calculated values of angular dispersion. Numerically, the dominant effect
will arise from P. Having established numerical values for P and Sb, the values of the
functions needed to calculate dispersion at the end of burning will now be determined
from reference (1). Using the notation of reference (1), the functions to be evaluated are
G1, G2, G3 & G4 and these are given in terms of the tabulated rocket functions ir, ra2, rr, rj.
Because S is large, the asymptotic expansions for the G functions and their integrals can be
used and are given in equations 111.1.62 to 111.1.69 of reference (1). In Table 1 of reference
(1), the rocket functions are tabulated for values of their arguments ranging from 0 to 51.
Series expansions for small and large arguments are given in chapter V. Plots of G(S,P) for
0<S<14 and 0<P<1.5 are shown in chapter 111. They are useful for checking calculated
values and for observing trends.

From equations 111.1.62 to 111.1.69, for large S:

G1(S,P) = 0.5 { ir(P) - ir(S) } (7)
G2(S,P) = 0.25 { ra2(P) - (1/s) } (8) 
G3(S,P) = 1 - vP rr(P) (9)
G4(S,P) = vP rj(P) (10)

For S larger than the maximum tabulated value of 51, put:

ir(S) = 1.96351 + ln(S)

The integrals of G are found from:

P∫S G1 dS = SG1 - 0.5G2 + 0.5( S - P ) (11)

P∫S G2 dS = SG2 + 0.5G1 (12)

P∫S G3 dS = SG3 - 0.5G4 (13)
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P∫S G4 dS = SG4 + 0.5G3 - 0.5 (14)

The rocket functions to be evaluated from Table 1 of reference (1) are thus ir(P), ra2(P),
rr(P), rj(P), for P = 0.465. Interpolation between the tabulated values gives:

ir(0.465) = 1.5541 ra2(0.465) = 1.0991

rr(0.465) = 0.9707 rj(0.465) = 0.3960

Substituting these values into equations (7) to (14) gives:

G1(Sb) = -3.1675 ∴ P∫S G1 dS = -999.3

G2(Sb) = 0.2741 ∴ P∫S G2 dS = 101.1

G3(Sb) = 0.3381 ∴ P∫S G3 dS = 126.4

G4(Sb) = 0.2701 ∴ P∫S G4 dS = 100.8

These values can now be inserted into the dispersion formulae, equations 111.1.6 and
111.1.43 of reference (1) to calculate individual components. The effect of a steady cross
wind will now be considered.

2.1 Dispersion Due to Steady Cross Wind

Dispersion arising from a steady atmospheric wind is not treated directly as such in
reference (1), but can be made to conform to a direct treatment by considering motion
relative to an axes frame that moves with the atmosphere. This transforms the problem
into that of a rocket launched into still air at some initial angle of attack δp and with an
initial velocity which is not parallel to the launcher rail.

We start by considering a rocket which is being launched into a steady cross wind
and which is moving parallel to, and along, the rail of its launcher. Let the launcher point
down range in the i, k plane and let the cross wind vector be jv, where v is a positive
constant. Thus, according to our sign convention, the cross wind is horizontal and is
blowing from right to left looking down range from the launcher. Now we have a
dynamic system consisting of three elements, a launcher at rest, a rocket moving with
launch velocity Vpt, and an atmosphere moving with constant velocity jv. If we
superimpose a velocity -jv upon this system we will end up with an atmosphere at rest, a
launcher moving with velocity -jv and a rocket with launch velocity Vpt - jv.

Dispersion arising from these conditions can be calculated directly from reference
(1). This dispersion, so calculated, gives the displacement of the rocket relative to the
moving atmosphere, but we want displacement relative to the earth. By simply adding jvt
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to the displacement vector relative to the atmosphere we obtain displacement relative to
earth, where t is motor burning time after the rocket leaves the launcher.

A mathematical justification for the foregoing procedure can be made as follows. In
reference (1), the dispersion of a rocket launched into still air at some angle of attack and
with a velocity not aligned with the launcher is found from solutions to the equation of
motion:

m (dV/dt) = T( Vp, s ) (15)

together with a simple aerodynamic pitching moment equation which relates the direction
of thrust vector T to flight path distance s by a simple harmonic oscillation about the Vp
direction and is independent of V. More generally, aerodynamic moments acting on a
rocket are dependent on the velocity relative to the air, VRA, and only on V when the air
is at rest. Thus, for air moving with velocity Vw, equation (15) becomes:

m (dV/dt) = T( VRAp, s ) (16)

where VRAp = Vp - Vw

and VRA = V - Vw (17)

The assumptions here are that the magnitude of the thrust T and the pitching frequency
remain unchanged when the magnitude of the rocket’s velocity is changed to its value
relative to the moving air.

When Vw is constant, it can be seen from equation (17) that:

(dV/dt) = (dVRA/dt)

which, when substituted into equation (16) gives:

(dVRA/dt) = T (VRAp, s) (18)

This equation is of the same form as equation (15) and therefore has the same
general solution in which different initial conditions are inserted. Having thus found the
displacement for VRA, relative to the moving air, it can be seen from equation (17) that
displacement relative to earth is found by adding Vw t when Vw is expressed in terms of
earth fixed unit vectors (eg i , j , k ) and t is time of flight.

Now return to the calculation of dispersion due to a cross wind jv. Relative to the
cross wind, the rocket leaves the launcher with velocity:

VRAp = Vp - jv = Vpt - jv

and the rocket’s longitudinal axis is aligned with the launcher in the t direction. Thus
VRAp lies in the t, j side plane and, within the assumption of first order deviation angles,
makes an angle of -v/Vp with the ideal trajectory direction t. Now use the solutions given
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in reference (1) for a rocket launched into still air, with an initial velocity deviation from
the ideal trajectory, -v/Vp, at initial angle of attack δp=v/Vp.

The angle of attack in the moving axes frame is that which would occur for a rocket
with velocity Vpt - jv launched into still air and with its longitudinal axis lying along the t
direction. In the t ,j side plane, the angle of attack is positive when the nose of the rocket
lies to the left of t looking down range. Hence, in the moving axes frame:

δp = (v/Vp) (to first order)
θhp= -(v/Vp)

Strictly, these angles, being in the side t, j plane, are the imaginary components of
the complex number representation of δp and θp used in the formulae of reference (1).
Thus, for substitution into these formulae, put:

δp = i (v/Vp)
θhp= -i (v/Vp)

From reference (1), equation 111.1.43 gives:

η = (σ/2π) (θp − θa) (S - P) + (σ/2π) P∫S G3 dS 

where η is the displacement of the rocket from the ideal flight path at distance S.θa is the
angle between the ideal flight path and the appropriate reference axis at launch. Taking
this reference direction as t for the cross wind dispersion makes θa equal to zero in the
side plane. Thus we have:

η = -i(v/Vp) (σ/2π) (S - P) + i(v/Vp) (σ/2π) P∫S G3 dS 

This gives η relative to the cross wind, so for η relative to earth we must add ivt where t is
time of flight. Finally, we get:

 η = -i(v/Vp) (σ/2π) (S - P) + i(v/Vp) (σ/2π) P∫S G3 dS + ivt (19)

 
Differentiating equation (19) with respect to s gives angular dispersion:

θ = -i(v/Vp) + i(v/Vp) G3 + i(v/V) (20)

At the end of burning: Sb=374.5
t=20s
P=0.465
σ=125.4m

P∫S G3 dS=126.4

Thus, from equation (19):
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ηb = -i(v/Vp) 7465 + i(v/Vp) 2523 + iv 20

and for Vp = 29.3 m/s:
ηb= -i 149 v m.

This means that the trajectory displacement from the ideal at all burnt is 149 metres
in the -i direction per unit of cross wind v. From our sign convention, the -i direction is
horizontally outward to the right, looking down range from the launcher. This movement
is in response to a cross wind blowing from the right.

From equation (20), at all burnt, with: G3 (Sb ,P) = 0.3381
Vb = 750 m/s

θb = -i(v/Vp) + i(v/Vp) 0.3381 + i(v/750)

 = -iv 0.0213 for Vp = 29.3 m/s (21)

Thus θb is in the negative part of the t ,j plane, which means that the dispersed
flight path is displaced to the right of t looking down range. To find the horizontal
projection of this angle in the i ,j plane, divide by the cosine of the angle between the ideal
flight path direction t and the horizontal down range direction i. From the computed
particle trajectory, this angle is 46 degrees at all burnt.

Hence flight path displacement angle measured from i in the horizontal ground
plane is:

= -iv (0.0213/cos 46°)
= -iv x 0.0307 radian
= -iv x 1.76 degrees (22)

This means that for each m/s of cross wind v, blowing from right to left, looking
down range, the projection of the trajectory in the horizontal ground plane at all burnt
will have deviated 1.76 degrees to the right of the horizontal direction of fire.

2.2 Dispersion Due to Steady Tail Wind

The significance of a tail wind is that it increases the effective launcher elevation
and it is important to avoid effective launch angles approaching 90 degrees. Thus an
estimate of angular dispersion in the vertical plane is required. We proceed in the same
manner as for the cross wind, but now the t, n axes in the vertical plane through the ideal
trajectory are the reference directions. If θa is the angle between the tangent to the ideal
trajectory and the horizontal (ie the angle between t and i) then the axes transformation
equations are:

i = t Cos θa - n Sin θa

k = t Sin θa + n Cos θa



13

 
in the vertical plane.

Let the tail wind vector be iu, where u is a positive constant. Then:

VRA = V - iu = Vt - u(t Cos θa - n Sin θa)
= t (V - u Cos θa) + nu Sin θa

Ignoring u Cos θa in comparison with V, the relative velocity vector at launch is given by:

VRAp = t Vp + nu Cos θap

where t and n are the unit tangential and upward normal direction vectors respectively of
the ideal trajectory at launch. Thus VRAp lies above t in the positive part of the t, n plane
and the deviation angle:

(u/Vp) Cos θap is thus positive.

The angle of attack in the moving axes frame is that which would occur on a rocket
with velocity Vpt + n uSinθ launched into still air with its longitudinal axis lying along the
t direction. Thus the nose of the rocket lies below t in the negative part of the plane and
hence the angle of attack at launch:

δp = -(u/Vp) Sinθ

Hence, in the moving axes frame:

δp = -(u/Vp) Sinθp
θvp = (u/Vp) Sinθp

When substituted into equations (19) and (20) the numerical results for dispersion
will be the same as for the cross wind but with iv replaced by -u Sin θp.

Thus, from equation (21) θb = u Sinθap x 0.0213
= 0.0200 u for θap = 70 degrees

This means that for every m/s of tail wind the launch angle is effectively increased
by 0.0200 radians or 1.147 degrees. Thus a tail wind of 17.4 m/s would raise the effective
launcher angle to 90 degrees from the actual value of 70 degrees.

This is a conservative result because it adds the total angular deviation at all burnt
to the launcher angle to get the effective angle of launch. What actually happens is that the
angular dispersion starts off at zero at the launcher and as it builds up to its maximum
value the ideal trajectory angle decreases. This behaviour could be calculated for a given
value of tail wind if considered critical in application to a particular firing.



14

2.3 Dispersion Due to Fin Misalignment

When the fins are misaligned with the body or are distorted they generate an
aerodynamic lifting force while the body is at zero angle of attack. In free flight, under
these conditions, the body will oscillate about the angle of attack at which the pitching
moment about the centre of gravity is zero. The thrust is then off set from the direction of
motion along the ideal trajectory, causing dispersion. When a rocket rolls during flight,
the off set thrust vector rotates and dispersion is reduced. Misaligned or distorted fins are
very likely to induce rolling motion. In order to use the simplest results of reference (1),
the assumption that there is no rolling motion will be made. The calculation thus results in
a maximum possible value and serves to indicate the sensitivity of dispersion to fin
misalignment.

Fin misalignment can be represented by a fin deflection angle relative to the body.
For the AUSROC four fin configuration, fin misalignment can be represented by an angle
ε, defined as the deflection angle that two adjacent fins would possess to generate the
same aerodynamic moment as the actual misalignment or distortion.

The aerodynamic moment about the centre of gravity, due to fin misalignment is
expressed as:

M = Q S d ε (dCmf/dα)

where: Q = dynamic pressure (Pa)

S = reference area (m2)

d = body diameter (m)

dCmf/dα = aerodynamic pitching moment coefficient
derivative for the fins alone.

When the body sits at angle of attack δm, the corresponding aerodynamic moment
is:

M = Q S d δm (dCm/dα)

where: dCm/dα = aerodynamic pitching moment coefficient
derivative for the complete rocket with no
fin distortion.

Equating these two moments, gives:

ε (dCmf/dα) = δm (dCm/dα)

Most of the dispersion occurs just after launch, so the aerodynamic moment
coefficient derivatives are taken as their subsonic values from the Aerodynamic Prediction
Program. These are:
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dCmf/dα = -1.9865 / degree
dCm/dα = -1.5534 / degree

Thus: δm = 1.279 ε

Equations 111.1.6 and 111.1.43 of reference (1) give the angular deviation θ and
displacement η due to δm as:

θ = -δm (G1 + G3)

η = -(σ/2π) δm P∫S (G1 + G3) dS

Thus for: G1(Sb) = -3.1675
G3(Sb) = 0.3381

P∫Sb G1 dS = -999.3

P∫Sb G3 dS = 126.4 (as tabulated in section 2)

θb = 3.62 ε

and ηb = 22282 ε  (ε in radians)

It follows that for a non-rolling rocket where fin misalignment is such that the thrust offset
is restricted to the side t, j plane, the flight path deviation in this plane at all burnt would
be i3.62 ε from the t direction. When projected into the horizontal plane, the equivalent
flight path deviation at all burnt is:

i 3.62 ε / Cos 46° = i 5.2 ε (23)

from the horizontal down range i direction.

2.4 Dispersion due to thrust misalignment

When the thrust vector does not pass through the centre of gravity of the rocket a
pitching moment is set up. This moment is countered by the aerodynamic restoring
moment on a stable rocket. Such a rocket will oscillate about the angle of attack at which
the aerodynamic moment balances the thrust moment. Hence the thrust will have a
component normal to the ideal flight path and this will cause dispersion. Using the
notation of reference (1), the thrust vector is assumed to make an angle δT with the axis of
the rocket and to have a moment arm L about the centre of gravity. δT is taken as positive
in the vertical plane when the resulting pitching moment tends to move the nose of the
rocket up above the flight path. The side plane component of δT is considered positive
when the resulting pitching moment tends to move the nose of the rocket to the left of the
flight path, looking down range. Side plane components of δT are prefixed by i because δT
is considered as a complex number in reference (1).
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Equations 111.1.6 and 111.1.43 of reference(1) give the angular dispersion θ and
displacement η due to thrust misalignment as:

θ = δT G1 + (σL/2πk2) G2

η = (σ/2π) δT P∫S G1 dS + (σ2L/4π2k2) P∫S G2 dS

where k is rocket radius of gyration in pitch = 1.11m

Thus, for: G1(Sb) = -3.1675 G2(Sb) = 0.2741

P∫Sb G1 dS = -999.3 P∫Sb G2 dS = 101.1

(as tabulated in section 2)

To determine L, it is assumed that the distance of the centre of gravity from the
motor nozzle is 2m for AUSROC. Thus for L=2 δT:

(σL/2πk2) = 32.4 δT

 θb = 5.71 δT

ηb= 45403 δT

Thus if the misalignment is restricted to the t, j side plane:

 θb = i 5.71 δT (24)

and when projected into the horizontal plane the equivalent flight path deviation at all
burnt is:

i (5.71 δT / Cos 46°) = i 8.22 δT

from the horizontal down range i direction.

2.5 Range safety calculation

Take an arc of 45 degrees in the horizontal ground plane down range of the
launcher as the boundary over which the rocket must not fly. This leaves 22.5 degrees on
either side of the down range horizontal axis direction as the maximum side dispersion.
The worst case of side dispersion that could occur is the unlikely one where all the effects
of fin misalignment, thrust misalignment, and cross wind are all directed towards the
same side direction. At all burnt, the ideal trajectory (ie the computed particle trajectory)
gives the horizontal down range distance as 5000m and the flight path angle as 46 degrees
above the horizontal. Hence the maximum allowable side displacement at all burnt is:
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5000 Tan22.5° = 2071 m

Taking the results for the components of ηb and θb from sections 2.4, 2.3 and 2.1 the
conditions to be satisfied by v, ε and δT are:

149v + 22282 ε + 45403 δT < 2071 (25)

(1/Cos46°) (0.0213v + 3.62 ε + 5.71 δT) < 22.5 x π /180

ie. 0.0307v + 5.21 ε + 8.22 δT < 0.393 (26)

Profile measurements of AUSROC II fins indicate a mean misalignment angle of
just less than 0.5 degree for a pair of opposite fins. At this stage, thrust misalignment has
not been ascertained, so a value of 0.5 degree will be allowed for here. Putting ε = δT = 0.5
degree = 0.00873 radian and substituting into inequalities (25) and (26) gives:

155 v < 1573

and 0.0318 v < 0.294

The maximum value of cross wind speed v satisfying these conditions is 9.0 m/s.

Summarising these results, we have found that for a thrust misalignment angle of
0.5 degree, a fin misalignment angle of 0.5 degree, and a maximum cross wind speed of
9.0 m/s, AUSROC II will remain within a 45 degrees arc down range of the launcher. For
zero thrust misalignment the maximum cross wind speed allowable becomes 11.0 m/s.
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3.0 Rolling Motion

It is important to check that the rolling and pitching frequencies of a rocket do not
have values which remain close to each other during flight, otherwise resonance may
occur. This spin-yaw resonance has the effect of enlarging rocket angle of attack and the
result could be disastrous.

The pitching rate in radians per metre can be estimated from equation 1.2.13 of reference
(1). Using the notation of reference (1) and section 2 of this report:

pitching rate:  θ’ = 2π/σ = v(Kmρd3/ I) = v(π Cmαρd3/8 I) (27)

This is a quasi steady approximation in that it ignores the rates of change of I, Km
and ρ in solving the moment equation. These rates of change are relatively small and the
approximation is reasonable.

Similar approximations can be made to estimate the rolling rate. The approach will
be briefly outlined here and the calculated results presented. First, a differential equation
for roll rate is set up by equating the rate of change of angular momentum to the fin
damping moment plus the forcing moment due to fin misalignment. The rate of change of
angular momentum component due to the change in rolling moment of inertia, Ixx, is
small enough to be neglected. The independent variable is changed from time t to flight
path distance s, and constant linear acceleration is assumed for flight during burning.

This results in the following first order differential equation for the roll rate:

φ" + ( (1/2s) + a ) = b (28)

a = (πρd4 /16 Ixx) Clp

 b = (πρd/16 Ixx) (dCnf/dδ) yf Σδi

where: φ = roll angle (φ'= dφ/ds, φ"= d2φ/ds2)

Clp = roll damping coefficient for the fins.
dCnf/dδ = normal force coefficient derivative for a

pair of fins
yf = spanwise position of fin centre of 

pressure
measured from the longitudinal axis of
rocket. (Assumed constant at 0.23m)

Σδi = algebraic sum of fin misalignment 
angles contributing to roll.

Ixx = Moment of inertia in roll. Assumed to
vary linearly with time from 2.36 kgm2 at
t=0, to 1.63 kgm2 at t>20 s.

Two approximate solutions for φ' can be derived from equation (28). One for the
initial motion and one for the quasi steady state. On leaving the launcher at s = p, the
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rocket has no rolling motion but, subsequently, the roll rate builds up to some quasi
steady value approximated by the roll rate at which the fin damping moment just
balances the forcing moment. The initial rolling behaviour is determined by taking a and
b to be constants in equation (28). The aerodynamic coefficients are taken as constant at
their subsonic values and sea level density is used. Under these conditions, the solution of
equation (28) is:

φ’ = (b/a) - (b/a) F(v(as))/v(as)

 - (b/a) [exp{-a(s-p)}/v(as)][v(ap) - F{v(ap)}] (29)

where: F(w) = exp(-w2) 0∫w exp(y2) dy

and is tabulated in Table 3 of reference (1).

The quasi steady solution for s large, is taken as:

φ’ = b/a = (yf /d2Clp) (dCnf/dδ)Σδi (30)

The following table shows a comparison of roll rate and pitching rate calculated for
AUSROC with the motor burning. Fin profile measurements indicate a roll torque
equivalent to one fin inclined at 10 minutes to the body longitudinal axis. ie Σδi = 10
minutes = 0.0029 radian.

Table 1.

Comparison of roll and pitch rates for AUSROC during motor burning.

time (t)
seconds

Pitchrate
 θ’ rad m/s

(x100)

Rollrate
 φ’ rad m/s

 (x1000)
0.675 0- 0.000
0.807 -0 0.046
0.908 0- 0.168
1.000 5.0 -
1.410 -0 0.777
3.018 -0 2.360
3.000 5.1 -
4.034 -0 2.800
5.000 5.2 -
7.000 5.3 3.300
9.000 5.9 3.500
10.00 6.4 3.600
13.00 5.2 3.000
17.00 4.0 2.700
20.00 3.2 2.600
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Table 1 shows that the pitch rate is at least one order of ten greater than the roll rate
during burning for AUSROC II with a fin misalignment equivalent to a fin cant of 10
minutes on one fin. Roll angle and roll rate are proportional to fin cant angle, hence a fin
misalignment equivalent to a cant of 100 minutes on one fin would lead to problems with
roll-yaw resonance.

After motor burn-out, AUSROC II coasts to apogee where the Mach number is 0.9
and the altitude is 13000m. During this phase of flight, there is little change in pitch rate.
This is because pitch rate is proportional to the square root of Cm and the decrease in
density ρ is compensated by an increase in Cm which approaches its maximum value at
transonic Mach numbers. The pitch rate at apogee is 3.1x10-2 rad/m. On the other hand,
roll rate is not dependent on density but only on Mach number and, as shown in Table 1,
the maximum value is 3.6x10-3 rad/m. Hence it can be concluded that AUSROC will be
free from roll-yaw resonance with an effective fin misalignment of 10 minutes in roll.

An estimate of roll angle during initial flight can be made by integrating equation
(29). Integrals of the F functions are given in Table 3 of reference (1) and the other
functions involved are error functions which are tabulated in most text books on statistics.
An esimate of roll angle during initial flight over two wavelenghs in yaw is shown in
table 2 below.

Table 2

 Variation of roll angle over first two wavelengths in yaw.

Flight path distance
wavelengths in Yaw

Roll Angle
Deg

0.00 0.00
0.25 0.43
0.50 2.13
0.75 4.72
1.00 7.98
1.25 11.72
1.50 15.82
1.75 20.23
2.00 24.84

Table 3 shows that for AUSROC II with 10 minutes of effective fin cant the change
in roll angle is about 25 degrees over the first two wavelengths in yaw. This amount of
roll would not significantly change the bias in dispersion due to fin or thrust
misalignment. The cosine of 25 degrees is about 0.9 so any reduction in bias has to be less
than 10%.
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4.0 Divergence

A rocket body is an elastic structure and accordingly will bend when subjected to
aerodynamic loading. It is possible for distortion due to bending to cause a further
increase in aerodynamic loading during flight. When the stiffness of a structure is
insufficient to resist bending due to this extra aerodynamic loading, a state of instability is
reached, which could result in severe distortion or fracture. This state is referred to as
divergence.

All that will be attempted here is the derivation of a simple criterion to provide a
rough check on the adequacy of AUSROC body stiffness to resist bending arising from
aerodynamic loading. To this end, the body of the rocket will be treated as a simple elastic
beam of constant stiffness EI, uniform mass distribution m, and of length s. Aerodynamic
loading will be represented by a normal force at each end of the beam, one generated by
the fins and the other by the nose. The coordinate system used is shown in figure 1, where
beam deflection is regarded as positive in the y-direction. Ro and Rs are the aerodynamic
normal forces generated by the fins and nose respectively when the rocket suddenly finds
itself at an angle of attack due to a cross wind gust in the side plane. The rocket responds
with angular acceleration d2θ/dt2 and with translational acceleration d2x/dt2 of its centre
of gravity.

 Figure 1. Representation of rocket body as a simple beam.

To determine the inertial loading at a point x on the beam, rigid body dynamics are
assumed. Thus if xg is the position of the centre of gravity, the acceleration of the body at
position x is:

 -(d2x/dt2) - (x - xg ) (d2θ/dt2)

in the y-direction. In order to determine the slope of the beam due to bending it is
necessary to first derive an expression for the bending moment at x. To do this, a segment
of beam of length x, starting from x=0, is isolated from the rest of the beam by an
imaginary cut. At the cut a force Rx and a moment Mx are introduced. These represent the
internal force and moment at position x, imposed by the portion of the beam to the right
of the cut upon the portion to the left. This force and moment system is shown in figure 2.

The mass of the beam segment is mx and the acceleration of the centre of gravity at 0.5 x
is:

-(d2xg/dt2) - ( (x/2) - xg ) (d2θ/dt2) (in the y-direction)
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Figure 2. Force and moment system on segment of beam from 0 to x.

The resulting force equation is thus,

 mx (-(d2xg/dt2) + ( (x/2) - xg ) (d2θ/dt2) ) (30)

The moment equation for the segment will now be derived.The moment of inertia
of the beam segment about its centre of gravity at 0.5x is mx2/12 and the angular
acceleration is d2θ/dt2. The moment about 0.5x, in the direction of θ, is:

(Rx - Ro) (x/2) + Mx

Τhus: (mx3/12) (d2θ/dt2) = (Rx - Ro) (x/2) + Mx (31)

Because the beam is unrestrained at each end, Mx=0 at x=0 and x=s. Putting x=s and
xg=0.5s, in equations (30) and (31) gives:

m(d2xg/dt2) = (1/s) (Ro + Rs)

m(d2θ/dt2) = (6/s2) (Rs - Ro)

Substituting these values of m(d2xg/dt2) and m(d2θ/dt2) into equations (30) and (31) and
eliminating Rx, gives:

Mx = Rs (x2/s2) (s - x) + Ro (x/s2) (s - x)2

as the internal bending moment at position x along the beam. According to simple beam
bending theory:

EI y”= -Mx where ‘ indicates d/dx

This equation is integrated to find the relationship between the slope of the beam, y', at
each end. Thus:

 EI y'(s) - EI y'(o) = - 0∫s (Rs (x2/s2) (s - x) + Ro (x/s2) (s - x)2 ) dx

 = - (s2/12) (Rs + Ro) (32)
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This bending of the beam changes the angle of attack at each end. If the angle of
attack of the beam before bending is α, then after bending:

αo = α - y’(o) αs = α - y’(s)

and hence: y’(s) - y’(o) = αo - αs (33)

where: αo = the angle of attack of the fins at x = 0
αs = angle of attack of the nose at x = s

Thus, the aerodynamic forces generated by these angles of attack are:

Ro = Q S (dCNf/dα) αo (34)

Rs = Q S (dCNn/dα) αs (35)

where: Q = dynamic pressure 0.5 ρ V2

dCNf/dα = aerodynamic normal force coefficient
derivative for the fins

dCNn/dα = aerodynamic normal force coefficient
derivative for the nose

S = reference area on which the aerodynamic
coefficients are based (ie πd2/4 for the 
aerodynamic prediction program)

Substituting for y’(s) - y’(o), Rs, and Ro, from equations (33), (34), (35), equation (32)
gives the following relationship between αs and αo:

  1 + [ Q S (dCNf/dα) s2 ] / 12 EI
αs = αo ___________________________ (36)

 1 - [ Q S (dCNn/dα) s2 ] / 12 EI

The rocket body at the fins will be extremely stiff compared with the rest of the
body. Hence most of the initial bending in response to a gust will tend to increase the nose
incidence. Thus if we interpret αo as unbent body angle of attack in equation (36) and αs
as nose angle of attack after bending, we have a conservative criterion for the divergent
effect of increased aerodynamic loading due to body bending. This divergent effect is
shown up by the denominator in equation (36) where it can be seen that as:

[ Q S (dCNn/dα) s2 ] / 12 EI → 1

αs becomes very large.

Often, the design criterion for determining the structural strength of a rocket body
is that it should withstand the aerodynamic loading arising from a given dynamic
pressure and unbent angle of attack. Because of the effect of bending, the actual angle of
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attack that can be withstood will be somewhat less. Suppose that this reduced angle of
attack, which must not be exceeded in flight, is α/n. Then, putting αo = α/n and αs < α, in
equation (36), gives the criterion to be satisfied by the stiffness EI as:

EI > [ ( Q S s2 ) / 12(n-1) ] [ (dCNf/dα) + n(dCNn/dα) ] (37)

For AUSROC II, maximum dynamic pressure is 186 kPa occurring at all burnt
when M=2.37. Thus:

Q = 186 kPa
dCNn/dα = 3.6
dCNf/dα = 9.85
S = πd2/4 = 0.0491 m2

 s = body distance between centres of pressure of fin
and nose normal forces. (Taken as 5m )

With these values for AUSROC, criterion (37) becomes:

EI > [19.02 / (n-1)] (9.85 + 3.6n) kPa m4 (38)

Putting n=2 for example in criterion (38) tells us that for AUSROC II if:

EI > 324.3 kPa m4

the nose angle will not exceed twice the unbent angle of attack.
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5. Normal Force Distribution on Fins

In this section approximate expressions for the normal force distribution on a fin
are given for the condition of maximum dynamic pressure. This occurs at all burnt when
the Mach number is 2.37 according to the particle trajectory computation for the drag
factor of 1. By taking the value of Mach number at all burnt to be 2.539, which is close to
the computed value for a drag correction factor of 0.8, the Mach line geometry on the fin
surface is simplified. At M=2.539 the Mach lines emanating from the root and tip leading
edge intersect at the fin trailing edge. This divides the fin surface up into three regions as
shown in figure 3.

Figure 3. Fin planform showing three regions of supersonic flow.

The procedure adopted here to derive approximate expressions for fin normal force
distribution is that at first the well-known results of linearised supersonic flow theory will
be used to predict lifting pressure coefficients on the boundaries of regions 1, 2 and 3.
These pressure coefficients take no account of the presence of the body. The body effect is
taken into account by multiplying the fin alone pressure coefficients by the Beskin
upwash factor (1 + r2 / (r + y)2 ). The pressure coefficients between the boundaries are
then assumed to vary linearly in the spanwise y-direction.

Region 1: In this region the air flow is conical with the property that flow
conditions are constant along rays emanating from the fin leading edge junction with the
root chord at O in figure 3. For the pressure coefficient along the root chord, conical
supersonic flow theory gives:

Cp = [4α / v(β2 - 1)] (2/π) sin-1[ v(1 - 1/β2)]

where: β2 = M2 - 1
α = fin angle of attack in radians.

For:  M = 2.539
β = 2.33
Cp = 1.36 (along the root chord y=0, for the fin alone)
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When y=0, the body upwash factor: (1 + r2 / (r + y)2 ) = 2

Hence along the root chord y = 0: Cp = 2 x 1.36 = 2.72

Region 2: The pressure coefficient is that for a swept wing of infinite span and, for the fin
alone, is given by:

Cp = 4α / v(β2-1) = 1.9 α

The inboard boundary of region 2 is the Mach line OR shown in figure 3 and has the
equation y = 3x / 7. Substituting this value for y into the upwash factor gives:

Cp = 1.9 (1 + 1/(1 + 0.024x / 7)2 )α

as the pressure coeficient along the Mach line OR.

The other two boundaries of region 2 are the leading edge y = x and the Mach line PR
with equation:

y = -3x / 7 + 3000/7

Thus: Cp = 1.9 (1 + 1/(1 + 0.008x)2 )α

is the pressure coefficient along the leading edge y = x, and:

Cp = 1.9 (1 + 1/(1 - 0.024x / 7 + 24/7)2 )α

is the pressure coefficient along the Mach line PR.

Region 3: This is a region of tip flow and along the fin tip PQ in figure 3 Cp=0. Thus to
find the value of Cp at some point (X,Y) on the fin we need to establish in which region
the point lies. Then establish which two boundaries the point is between in the y-ward
directions and linearly interpolate between the values of Cp on each boundary. For
example, if

Y > 3X / 7 and X < 300

then the point lies in region 2 between y = 3X / 7 and y = X on the spanwise line x = X.
Then by linear interpolation:

Cp(X,Y) = Cp(X,3X/7) + [(Y-3X/7)/(X-3X/7)] (Cp(X,X) - Cp(X,3X/7))

where: Cp(X,3X/7) = 1.9(1 + 1/(1 + 0.024X/7)2)α on the Mach line OR

and: Cp(X,X) = 1.9(1 + 1/(1 + 0.008X)2 )α on the fin leading edge.

As a check on the error involved in this way of approximating Cp(X,Y), an
integration taken over the entire fin gave a value of S(dCn/dα) 20% greater than the value
obtained from the aerodynamic prediction program. To find the aerodynamic normal
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force over an area of fin surface, integrate Cp(x,y) over the area, using the approximate
relationships, and multiply the result by the free stream dynamic pressure, which at all
burnt is 186kPa. The foregoing results simplify calculations of fin loadings and moments
needed for checking fin strength and are conservative because they overestimate fin
loading.
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6. Results and Conclusions

This section provides a summary of the results of the investigations described in
this Report, starting with rocket flight path dispersion.

6.1 Lateral Dispersion

Calculations have been made to estimate lateral flight path dispersion due to cross
wind, fin misalignment and thrust misalignment. Lateral displacements from the
unperturbed trajectory at all burnt have been calculated for these three causes. At all
burnt, on the unperturbed trajectory, AUSROC II is at an altitude of 6000m and at a down
range horizontal distance of 5000m from the launcher. While the motor is thrusting, a
steady cross wind causes a rocket to deviate towards the direction from which the cross
wind is coming. Thus for a cross wind blowing from the right, looking down range, a
thrusting rocket will veer towards the right. The calculated results for lateral displacement
from the unperturbed trajectory at all burnt are as follows:

149m for every m/s of cross wind

389m for every degree of fin misalignment

792m for every degree of thrust misalignment

The last two figures have been calculated on the assumption that the rocket does
not roll and hence that the plane in which the motor thrust is offset, due to the
misalignment, remains fixed.

The results for the lateral angular displacement of the perturbed trajectory from the
unperturbed trajectory at motor all burnt are:

1.22 degrees for every m/s of cross wind

3.62 degrees for every degree of fin misalignment

5.71 degrees for every degree of thrust misalignment

These lateral angular deviations for fin and thrust misalignments occur in the plane
in which the thrust is offset for a non-rolling rocket. For the cross wind, the angular
deviation is in the side plane, defined as the plane which contains the tangent to the
unperturbed trajectory and which is normal to the vertical plane. Hence the side plane
orientation changes as the unperturbed trajectory tangent changes direction along the
flight path. At motor all burnt, the unperturbed trajectory tangent makes an angle of 46
degrees with the horizontal. Because range boundaries are defined in the horizontal
ground plane, the angular deviations quoted for the side plane need to be projected on to
the horizontal plane.

The relationship between these angles is that:

Tan(Side plane angle) = Tan(Projection of angle in horizontal plane)
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 x Cos(Angle between trajectory tangent and horizontal).

Thus for small deviation angles we can drop the Tan from the above relationship. Then at
all burnt:

(Side plane angle) = (Projection of angle in horizontal plane)
x Cos(46degrees)

Lateral angular deviation is a maximum when the deviations due to fin and thrust
misalignment occur in the same direction as that due to cross wind, which is in the side
plane defined above. In this case, the projections of the deviations on to the horizontal
plane at motor burn out are:

1.76 degrees for every m/s of cross wind

5.2 degrees for every degree of fin misalignment

8.22 degrees for every degree of thrust misalignment

These results can be used to place a conservative restriction on cross wind speed.
Taking the measured fin misalignment angle of 0.5 degree and allowing 0.5 degree for
thrust misalignment it is found that for cross wind speeds of less than 9 m/s, AUSROC II
will remain within a 45 degree arc down range of the launcher.

6.2 Dispersion due to Tail Wind

The significance of a tail wind is that it tends to increase the effective launch angle
of a thrusting rocket. For launch angles close to 90 degrees, lateral dispersion entirely
governs the initial direction of flight, so that flight in a backwards direction behind the
launcher is a possibility. The calculated result for tail wind dispersion is that the trajectory
elevation angle is increased by 1.15 degrees for every m/s of tail wind. A conservative
limit of 10 m/s is suggested for tail wind. This would increase the QE from 70 degrees to
an effective 81.5 degrees, leaving some margin for fin and thrust misalignment.

Dispersion is sensitive to the value of rocket speed as the rocket just leaves the
launcher. It is important to ensure that AUSROC II develops its full design speed of 30
m/s before leaving the launcher. A loss of speed due to slow thrust build up could greatly
increase dispersion.

6.3 Rolling Motion

Rolling rate is proportional to the effective fin cant which from fin measurements
was found to be equivalent to a cant of 10 minutes on one fin panel. This produces a roll
rate of about 0.1 of the pitch rate. Hence it is concluded that roll-yaw resonance will not be
a problem. An effective fin cant of about 100 minutes on one fin panel would lead to
problems with roll-yaw resonance.

Most of the dispersion due to wind,fin and thrust misalignment, occurs over the
first two wavelengths in yaw after a rocket leaves the launcher. Over this distance, the roll
angle turned through by AUSROC II is calculated to be 25 degrees for the measured fin
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cant of 10 minutes. This is insufficient to significantly overcome the initial bias in the
direction of dispersion due to thrust or fin misalignments. Roll measurements taken
during the flight test of AUSROC II would be necessary for analysing results from
onboard accelerometer measurements and for checking the actual amount of fin cant.

6.4 Body Divergence

The criterion derived for body stiffness EI, to avoid divergence due to elastic
deformation under aerodynamic loading is that:

 EI >> (Q S s2 /12) (dCNn/dα)

where: dCNn/dα = normal force coefficient derivative for nose
 S = reference area for aerodynamic coefficient = πd2/4 =.0491 m2

s = body length = 5m
Q = dynamic pressure

For the maximum dynamic pressure which occurs at all burnt:

Q = 186 kPa dCNn/dα= 3.6

and the above criterion becomes:

EI >> 68.5 kPa m4

The closer EI approaches (Q S s2 /12) (dCNn/dα) the greater the tendency of the
body to bend without limit and hence for the body to fracture under aerodynamic
loading.

Another derived result which relates the amount of bending to the stiffness EI is as
follows. When a wind gust induces a given angle of attack at the fins, which form a
relatively stiff part of the body structure, the angle of attack of the nose after body
bending will be less than n times the fin angle of attack if:

EI > (Q S s2 / (n-1) ) (dCNf/dα  +  ndCNn/dα)

which for n = 2 at maximum dynamic pressure becomes:

EI > 324 kPa m4

6.5 Aerodynamic Load Distribution on Fins

Simplified expressions for fin normal force distribution are given in section 5.
These expressions are derived from linear interpolations between values calculated from
linear supersonic flow theory with the upwash effect from the body superimposed. Being
analytically simple, these expressions are suggested for use in fin stress calculations where
bending moments need to be determined.


