
1

Implementation and Performance of a
Turbo/MAP Decoder

Steven S. Pietrobon, Senior Member, IEEE

Abstract — The implementation and performance of a turbo/MAP decoder is described.

A serial block MAP decoder operating in the logarithm domain is used to obtain a very high

performance turbo decoder. Programmable gate arrays and EPROM’s allow the decoder to

be programmed for almost any code from 4 to 512 states, rate 1/3 to rate 1/7 (higher rates are

achieved with puncturing), and interleaver block sizes to 65,536 bits. Seven decoding stages

were implemented in parallel. For rate 1/3 and 1/7 16 state codes with an interleaver size of

65,536 bits and operating at up to 356 kbit/s the codec achieved an Eb/N0 of 0.32 and –0.30

dB, respectively for a BER of 10–5. BER’s down to 10–7 were also achieved for a small increase

in Eb/N0 . An efficient implementation of a continuous MAP decoder is also presented, along

with a synchronisation technique for turbo decoders.

Index Terms — turbo coding, MAP decoding, synchronisation.

��� � ��	���
�	���

RROR control coding aims to correct errors caused by noise and interference in a digital

communications scheme. For power limited schemes, the energy per bit to single sided noiseE
density ratio (Eb/N0) is desired to be as low as possible. Good examples of this are satellite and space

communications where fairly low bandwidth efficiencies (K, in bits transmitted per signalling

interval or bit/sym) of 0.1 to 2 bit/sym are used.

A paper submitted to the International Journal of Satellite Communications 21 February

1997. Revised 4 December 1997, 2 April 1998. This work was performed under the sponsorship

of the Australian Research Council and University of South Australia. The material in this paper

was partially presented at the International Symposium on Information Theory, Whistler, BC,

Canada, Sep. 1995 and International Symposium on Information Theory and its Applications,

Victoria, BC, Canada, Sep. 1996.

The author was with the Satellite Communications Research Centre, University of South

Australia, The Levels SA 5095, Australia. He is now with Small World Communications, 6 First

Avenue, Payneham South SA 5070, Australia.

2

Coding adds redundancy using special codes. A decoder will then use this redundant

information to correct as many errors as possible. Shannon [1] showed that for an additive white

Gaussian noise channel, the smallest Eb/N0 that can be obtained for reliable transmission is

Eb�N0 �
2K � 1

K
. (1)

As K approaches 0 or the required bandwidth approaches infinity, the smallest value of Eb/N0 is ln 2

or approximately –1.59 dB. A typical scheme such as uncoded quadrature phase shift keying

(QPSK) with K = 2 bit/sym requires an Eb/N0 of 9.6 dB for a bit error ratio (BER) of 10–5. Figure

1 plots K versus Eb/N0 showing the Shannon capacity curve from (1) and the capacity curve when

QPSK modulation is used [2]. Also plotted are the performances of uncoded QPSK and some other

coding schemes at a BER less than or equal to 10–5. Note that the Voyager and Galileo schemes use

binary phase shift keying (BPSK) which would result in their bandwidth efficiencies being reduced

by half. However, since Gray mapped QPSK can achieve the same performance as BPSK with twice

the bandwidth efficiency, we plot the Voyager and Galileo schemes using QPSK.

The industry standard code for satellite communications is a rate 1/2, 64 state, non–systematic

convolutional code [3] with a soft–decision Viterbi decoder. This code can achieve an Eb/N0 of 4.2

dB at a BER of 10–5, giving a 5.4 dB coding gain. In practise, the use of three bit soft–decisions

and other quantisation effects in the decoder result in a 0.2 dB performance loss. Another 0.2 dB

may be lost due to the use of differential encoding to resolve 180° phase ambiguities in the QPSK

signal set.

To obtain better performance, the standard code has been concatenated with a Reed–Solomon

(RS) outer code. The most famous example is the (255,223) GF(28) RS code with depth eight

interleaving used on the Voyager space probes [3,4]. This scheme can achieve an Eb/N0 of 2.53 dB

at a BER of 10–6 and K = 0.875 bit/sym. A more advanced scheme uses a rate 1/4, 8192 state,

non–systematic convolutional inner code and a time varying, depth eight GF(28) RS outer code with

redundancy profile (94,10,30,10,60,10,30,10) giving a (255,223.25) code on average [5]. Four

stages of iterative decoding is used to obtain an Eb/N0 of 0.58 dB at a BER of 10–7 and K = 0.438

bit/sym. This is the most powerful code currently in use and is 1.5 dB from Shannon capacity at

K = 0.438 bit/sym.

In 1993, Berrou et al. published a paper describing a new coding scheme called “turbo–codes”

[6]. A rate 1/2 code is described that achieved the amazing performance of Eb/N0 = 0.7 dB at a BER

of 10–5. This is only 0.7 dB and 0.5 dB from Shannon and QPSK capacity, respectively, at K = 1

bit/sym. The encoder consists of two parallel concatenated systematic convolutional encoders

3

separated by a random interleaver. The code in [6] used two punctured 16 state codes and a 65,536

bit interleaver. This code is shown as TC1 in Figure 1.

Decoding is performed iteratively. Each systematic code is decoded using a soft–in soft–out

(SISO) decoder. The output of the first decoder feeds into the second decoder to form one turbo

decoder iteration. Eighteen iterations were performed in [6]. The SISO decoder used in [6] is a

modification of the maximum a posteriori (MAP) decoding algorithm [7]. A similar iterative

decoding technique is described by Gallager in his 1962 paper on low density parity check codes

[8]. Each parity bit and its associated checked information bits is treated as a single (k+1,k) block

code. A simple soft–output MAP decoding algorithm is used for each of the parity bits. A second

SISO MAP decoder is then used to decode the information bit associated with the j parity check

bits. The process then repeats.

The MAP algorithm finds the most likely information bit to have been transmitted in a coded

sequence. This is unlike the Viterbi algorithm [9] which finds the most likely sequence to have been

transmitted. When the decoded BER is small, there is a negligible error performance difference

between the MAP and Viterbi algorithms. Since the MAP algorithm is considerably more complex

than the Viterbi algorithm it has thus been largely ignored. However, at low Eb/N0 and high BER’s,

MAP can outperform soft–output Viterbi by 0.5 dB or more. For turbo codes this is very important

since the output BER’s from the first stages of iterative decoding can be very high. Thus any

improvement that can be obtained at these high BER’s will directly result in performance increases.

A practical application of turbo/MAP decoders for satellite communications is given in [10].

Various turbo coding schemes were investigated to achieve 2 bit/sym bandwidth efficiency over a

high speed mobile satellite link. Using a rate 1/2 turbo code with a 4000 bit block size, 8 iterations,

and 16QAM modulation, an Eb/N0 of 3.25 dB could be achieved over an ideal AWGN channel for

a BER of 10–5. This is only 1.5 dB from Shannon capacity at 2 bit/sym. This code is shown as

(2,1,4;12,8,M)16QAM in Figure 1. The notation (n,k,�;m,I,j) is used to describe a turbo code with

n = number of coded bits, k = number of information bits (the code rate R = k/n), � = memory of

individual encoders (the number of states is equal to 2�), m� log2 Ni where Ni is the interleaver

size, I = number of decoder iterations, and j = M or V indicates MAP or SOVA decoders,

respectively.

The MAP algorithm does not have to be used in a turbo decoder. The simpler soft–output

Viterbi algorithm (SOVA) [11–14] can be also used. However, since the output of SOVA does not

provide as good a statistic as MAP and makes more errors, degradations of about 0.8 dB can be

expected in overall performance [15]. SOVA has been used in [16] to implement a turbo decoder

4

on a chip. Two punctured eight state codes were used to obtain a rate 1/2 turbo code which achieves

an Eb/N0 of 2.6 dB at a BER of 10–5. This is almost the same performance of the more complicated

Voyager code! The interleaver size is 1024 bits and 2.5 iterations (five SOVA decoders) were used.

The code is shown as TC3 in Figure 1.

A single iteration on a chip was implemented in [17]. This chip consists of two 16 state SOVA

decoders and a 2048 bit interleaver/deinterleaver. A performance of Eb/N0 = 1.7 dB at a BER = 10–5

is achieved after five iterations for a rate 1/2 turbo code. This is TC2 in Figure 1.

An obstacle to implementing the code in [6] is its sheer complexity. The MAP algorithm

described in [6] is very complex and is not very amenable to hardware implementation. By

operating the algorithm in the logarithm domain [18,19], the complexity can be greatly reduced.

In this paper we describe the implementation and performance of a turbo/MAP decoder which can

implement the code in [5]. The MAP decoder was designed to be very flexible and can be

programmed to operate from 4 to 512 states and from rate 1/2 to rate 1/4. Punctured codes can also

be implemented. The decoding speed ranges from 17.7 kbit/s for 512 states to 624.4 kbit/s for 4

states. A 16 state code operates at 356.8 kbit/s.

We first give the derivation of the MAP, log–MAP, and sub–MAP decoding algorithms. This

is followed by a description of an implementation of the log–MAP algorithm. We then describe the

iterative turbo decoding algorithm and give a description of its implementation. Actual

performance curves of the decoder are presented followed by some comments on continuous

decoding and synchronisation.

���� � �
�� ���� ��	���� ���� ������� ��	����
�

We present here a full derivation of the MAP decoding algorithm for systematic convolutional

codes on an additive white Gaussian noise (AWGN) channel. The derivation is similar to that in [18]

with the final presentation of the algorithm being slightly simpler than the traditional presentations.

A. The MAP Decoding Algorithm

The origin of the MAP algorithm belongs to Chang and Hancock [20] who developed it to

minimise the symbol (or bit) error probability for an inter–symbol interference (ISI) channel.

Simultaneously, Bahl et al. [21] and McAdam et al. [22] developed the algorithm for use on coded

channels. The MAP algorithm that was presented in [6] for systematic convolutional codes is very

complicated. A simplified version of this algorithm is given in [18]. However, Berrou et al. changed

over to the more traditional presentation [15,23] of the algorithm in [24].

For an encoder with � memory cells, we define the encoder state at time k, Sk, as a �–tuple,

depending only on the output of each delay element. The information bit at time k, dk, is associated

5

with the transition from time k to time k+1 and will change the encoder state from Sk to Sk+1. Also

suppose that the information bit sequence {dk} is made up of N�� independent bits dk, taking

values 0 and 1 with a priori probability (APrP) �0
k and �1

k, respectively (�0
k � �1

k � 1). We let the

encoder initial state S1 be equal to zero. The last � information bits (dN���1 to dN) are set to values

that will force the state to 0 at time N+1 (i.e., SN+1 = 0). This will slightly reduce the rate of the

encoder.

We consider a rate 1/2 systematic feedback encoder whose outputs at time k are the uncoded

data bit, dk, and the coded bit, ck. These outputs are modulated with a BPSK or QPSK modulator

and sent through an AWGN channel. At the receiver end, we define the received sequence

RN
1 � (R1, ��� , Rk, ��� , RN), (2)

where Rk = (xk, yk) is the received symbol at time k; xk and yk are defined as

xk � (2dk� 1)� pk, (3)

yk � (2ck� 1)� qk, (4)

with pk and qk being two independent normally distributed random variables with variance �2. We

define the likelihood ratio, �k associated with each decoded bit dk as

�k �
Pr(dk � 0|RN

1
)

Pr(dk � 1|RN
1
)
, (5)

where Pr(dk � i|RN
1), i = 0,1 is the a posteriori probability (APoP) of the data bit dk. The APoP

of a decoded data bit dk can be derived from the joint probability defined by

�i,m
k

� Pr(dk � i, Sk � m|RN
1), (6)

and thus the APoP of a decoded data bit dk is equal to

Pr(dk � i|RN
1) �	

m

�i,m
k

, (7)

where i = 0,1 and the summation is over all 2� encoder states. From (5) and (7), the �k associated

with a decoded bit dk can be written as

�k �

	
m

�0,m
k

	
m

�1,m
k

. (8)

The decoder can make a decision by comparing �k to a threshold equal to one

d
^

k � � 0 ; �k � 1,

1 ; �k � 1.
(9)

Using Bayes’ rule, the joint probability from (6) can be rewritten as follows

�i,m
k

� Pr(dk � i, Sk � m, RN
1)�Pr(RN

1),

6

� Pr(Rk�1
1 |dk � i, Sk � m, RN

k)Pr(RN
k�1|dk � i, Sk � m, Rk)

� Pr(dk � i, Sk � m, Rk)�Pr(RN
1). (10)

We have

Pr(Rk�1
1 |dk � i, Sk � m, RN

k) � Pr(Rk�1
1 |Sk � m) � �m

k , (11)

since the assumption that Sk = m implies that events before time k are not influenced by observations

after time k. We define �m
k as the forward state metric at time k and state m. Similarly, we have

Pr(RN
k�1|dk � i, Sk � m, Rk) � Pr(RN

k�1|Sk�1 � f (i, m)) � �f (i,m)
k�1

, (12)

where f(i,m) is the next state given an input i and state m. We define �m
k as the reverse state metric

at time k and state m. We define the branch metric as

�i,m
k

� Pr(dk � i, Sk � m, Rk). (13)

Substituting (11) to (13) in (10) we obtain

�i,m
k

� �m
k �

i,m
k
�f (i,m)

k�1
�Pr(RN

1). (14)

This result can be used to evaluate (8) as

�k �

�
m

�m
k
�0,m

k
�f (0,m)

k�1

�
m

�m
k �

1,m
k

�f (1,m)
k�1

, (15)

where the summations are over all 2� states. The usual expression for (15) involves a double

summation in both the numerator and denominator.

We want to show that (11) can be recursively calculated. We can express (11) as

�m
k � Pr(Rk�1

1 |Sk � m)

��
m�

�1
j�0

Pr(dk�1 � j, Sk�1 � m�, Rk�1
1 |Sk � m)

��
m�

�1
j�0

Pr(Rk–2
1 |Sk � m, dk–1 � j, Sk–1 � m�, Rk�1)Pr(dk–1 � j, Sk–1 � m�, Rk–1|Sk � m)

��1
j�0

Pr(Rk�2
1 |Sk–1 � b(j, m))Pr(dk–1 � j, Sk–1 � b(j, m), Rk�1)

��1
j�0

�b(j,m)
k�1

�j,b(j,m)
k�1

, (16)

where the first summation is from m� � 0 to 2�–1 and b(j,m) is the state going backwards in time

from state m on the previous branch corresponding to input j. In a similar way we can recursively

calculate the probability�m
k from the probability �m

k�1. Note that this is possible only after the whole

block of data is received. Relation (12) becomes

7

�m
k � Pr(RN

k |Sk � m)

�

m	

1
j�0

Pr(dk � j, Sk�1 � m	, RN
k |Sk � m)

�

m	

1
j�0

Pr(RN
k�1|Sk � m, dk � j, Sk�1 � m	, Rk)Pr(dk � j, Sk�1 � m	, Rk|Sk � m)

�
1
j�0

Pr(RN
k�1|Sk�1 � f (j, m))Pr(dk � j, Sk � m, Rk)

�
1
j�0

�j,m
k
�f (j,m)

k�1
. (17)

Figure 2 gives a graphical illustration of the calculation of �m
k and �m

k . It is very similar to the

architecture of the Viterbi algorithm. Where we add the branch metric to the state metric in the

Viterbi algorithm, we multiply in the MAP algorithm. Where we find the minimum of the path

metrics in the Viterbi algorithm, we add in the MAP algorithm. Thus, the add–compare–select

(ACS) operation in the Viterbi algorithm becomes the multiply–add (MA) operation in the MAP

algorithm.

The MAP algorithm works by first calculating the �m
k ’s in the forward direction and storing

the results. The �m
k ’s are then calculated in the reverse direction. An important observation is that

the �j,m
k
�f (j,m)

k�1
 term in (17) is also used in the calculation of �k in (15). Thus, while the �m

k ’s are being

calculated, �k should be calculated at the same time, reusing the �j,m
k
�f (j,m)

k�1
 terms to minimise the

number of computations. If the block starts in state zero then we initialise �0
1 � 1 and �m

1 � 0 for

m� 0. A similar initialisation is performed for �m
N�1 if the block ends in state zero. If the block

ends in an unknown state (which occurs when there is no termination) then �m
N�1 � 1 for all m.

The branch metric �j,m
k

 can be determined from the transition probability of the discrete

memoryless channel and the APrP. From (13) and using Bayes’ rule we have

�i,m
k

� Pr(dk � i, Sk � m, Rk)

� Pr(Rk|dk � i, Sk � m)Pr(Sk � m|dk � i)Pr(dk � i)

� Pr(xk|dk � i, Sk � m)Pr(yk|dk � i, Sk � m)�i
k�2�, (18)

since pk and qk are independent, the current state is independent of the current input and can be in

any of the 2� states, and �i
k � Pr(dk � i) by definition. For an AWGN channel with zero mean and

variance �2 (18) becomes

�i,m
k

�
�i

k

2� 2�� �
exp�� 1

2�2 (xk� (2i � 1))2�dxk
1

2�� �
exp�� 1

2�2 (yk� (2ci,m� 1))2�dyk

8

� �k�
i
kexp�Lc(xki � ykc

i,m)�, (19)

where �k is a constant, dxk and dyk are the differentials of xk and yk, Lc � 2��2, and ci,m is the coded

bit given dk = i and Sk = m. Since the constant �k in (19) doesn’t affect �k in (15) we can normally

ignore �k. In practise though, when calculating the forward and reverse state metrics, we let �k be

equal to the inverse of the largest previous state metric. This normalises the new state metrics and

ensures that the state metrics do not under or overflow.

If we substitute (19) into (15) we obtain

�k �
�0

k

�1
k

exp(� Lcxk)

	
m

�m
k

exp(Lcykc
0,m)�f (0,m)

k�1

	
m

�m
k exp(Lcykc

1,m)�f (1,m)
k�1

,

� �kexp(� Lcxk)�
�
k, (20)

where �k � �0
k��

1
k is the input APrP ratio and ��k is the output extrinsic information. One can think

of ��k as a correction term that changes the input information so as to minimise the probability of

decoding error. This extrinsic information is very important in turbo decoding as it allows the

corrections terms to be passed from one decoder to the next.

B. The log–MAP Decoding Algorithm

To minimise the decoding complexity, we would like to eliminate the multiply operations

required by the MAP algorithm. This can be achieved by taking the logarithm (or negative

logarithm) of the algorithm. Again, this technique was first used for the ISI channel [26,27]. It was

later applied to the coding channel in [18,19,25,28,29].

Taking the negative logarithm, the multiplications in the algorithm are converted to additions.

Adders are much easier to implement than multipliers. However, the additions are converted to the

E operand defined below

a E b � � log�(��a � ��b)

� min(a, b) � log��1� ��|a�b|�. (21)

The functions min(a,b) and |a–b| can be easily determined using subtraction and multiplexer

circuits. However, the function

f (z) � log�(1� ��z)

� c ln(1� e�z�c) (22)

where c � 1� ln � � log�e would appear to be too complicated to be implemented. Figure 3 plots

f(z) against z for c = 1. We can see that f(z) quickly decays to zero and has a maximum value of

9

c ln 2 � 0.693c (for z� 0). Thus, f(z) can be easily implemented in a small lookup table. A range

of lookup tables can be implemented to cover various values of c.23

If we let

Lk � � log� �k
(23a)

Am
k � � log��

m
k

(23b)

Bm
k � � log� �

m
k

(23c)

Di,m
k

� � log��
i,m
k

(23d)

the MAP algorithm becomes

Lk � E
2��1

m�0

Am
k � D0,m

k
� Bf (0,m)

k�1
� E

2��1

m�0

Am
k � D1,m

k
� Bf (1,m)

k�1
(24)

Am
k �E

1

j�0

Ab(j,m)
k�1

� Dj,b(j,m)
k�1

(25)

Bm
k �E

1

j�0

Dj,m
k

� Bf (j,m)
k�1

(26)

where El�1
j�0 aj � a0 E a1 E���E al�1. The branch metrics are

Di,m
k

� � log��k� log� 	
i
k� A(xki � ykc

i,m)

� � log��k� log� 	
0
k � i log�(1

k�	
0
k) � A(xki � ykc

i,m)

� � Kk� (zk� Axk)i � Aykc
i,m (27)

where Kk is a constant, A � (2��2) log�e� Lcc, and zk � � log� 	k is the log–APrP. To perform

renormalisation we let Kk be equal to the smallest previous state metric. We can think of A as the

no–noise amplitude of our demodulated and quantised signal, e.g., +1 could be equivalent to A =

7 = 1112. Note that we can arbitrarily vary A and Lc to determine c and thus the values in a lookup

table for (22). Alternatively, given Lc and a lookup table for a value of c, we can vary A. We can

re–express (20) as

Lk � zk� Axk� z
k (28)

where z
k � � log� 	

k is the extrinsic information from the log–MAP decoder.

C. The sub–MAP Decoding Algorithm

If we let f(z) = 0, then (24) to (26) becomes

Lk � min
m
�Am

k � D0,m
k

� Bf (0,m)
k�1

	� min
m
�Am

k � D1,m
k

� Bf (1,m)
k�1

	 (29)

Am
k � min �Ab(0,m)

k�1
� D0,b(0,m)

k�1
, Ab(1,m)

k�1
� D1,b(1,m)

k�1
	 (30)

10

Bm
k � min �D0,m

k
� Bf (0,m)

k�1
, D1,m

k
� Bf (1,m)

k�1
�. (31)

This sub–optimal algorithm (which we shall call sub–MAP) has the advantage that it is independent

of �2. Again, this algorithm was first derived for the ISI channel [26,27] and then later applied to

the coding channel [19,30]. It has the same sub–optimal hard decision performance as the Viterbi

algorithm [19]. Note that the calculation of the forward state metrics is exactly the same as the state

metric (SM) calculation for the Viterbi algorithm. However, unlike the Viterbi algorithm, the SM’s

also need to be calculated in the reverse direction and the likelihood ratio determined.

����� � �
	�
������� ���� 	���
���	������

As can be seen from (24) to (27), there are four major sections in a log–MAP decoder. These

are the forward state metric calculator (FSMC), reverse state metric calculator (RSMC), log

likelihood ratio calculator (LLRC), and the branch metric calculator (BMC). To minimise the

decoder gate count, it was decided to have a serial implementation. That is, each of the SM’s are

computed one at a time. This is similar to previous serial Viterbi and trellis decoders constructed

by the author [31,32]. Since there are 2� states, this implied that it would take at least 2� decoder

clock (CLK) cycles to decode each bit. Thus the CLK frequency had to be at least 2� times greater

than the data clock (DCLK) frequency.

To avoid problems with high speed clocks, it was decided to limit the CLK speed to 10 MHz.

Also, the Xilinx XC3100A [33] series programmable logic was chosen due to its low cost and

relatively high speed.

A. Branch Metric Calculator

From [34], the BM’s are calculated as follows

Di,m
k

� |zk� Axk|(i � u(zk� Axk)) � |Ayk|(c
i,m� u(Ayk)) � Kk (32)

where i � j is the modulo–2 sum of i and j and u(w) is the unit step function. As before, Kk is equal

to the minimum previous state metric. In two’s complement notation, u(w) corresponds to the

logical inverse of the most significant or sign bit of w. It can be shown that

|w|(j � u(w)) � � wj � (w� |w|)�2. (33)

The � wj term in (33) directly corresponds to the terms in (27) with w � zk� Axk and j = i or

w � Ayk and j � ci,m. The additional terms are constants dependent on k only and can be absorbed

in Kk. We can see that when the BM in (32) is added to its state metric, the resulting value will always

be greater than or equal to zero.

An important consideration is the value of the signal amplitude A. The optimum value of A can

vary depending on the number of quantisation bits q and the noise variance �
2 [36]. Figure 4

11

illustrates a model of the demodulator for the received signal xk (as defined in (3)). A model of the

branch metric calculator is also shown (we have assumed that zk = 0 in this case). We assume that

xk is multiplied by some unknown fixed positive voltage V. The demodulator has an automatic gain

control (AGC) circuit that effectively normalises the input signal to its mean absolute value, i.e.,

E�|Vxk|� � VE�|2dk� 1� pk|�

� V	� 2
�

� exp	� 1
2�2

� 1� 2Q	1

�

� Vmag(�). (34)

Note that for high SNR (and low �) that mag(���� � 1. However, for low SNR (and high �) we have

mag(��� � � 2��� � 0.798�. This is very important when trying to estimate the noise variance.

A variance estimator that assumes mag(��� =� 1 will work correctly only for high SNR.

For turbo codes where a low SNR is expected, a more complicated method is required to

determine V and �. We can see from (34) that we have two unknowns and one equation. To solve

for V and � we need another equation which can be obtained by estimating the square of the received

signal,

E�(Vxk)
2�� V2(1� �

2). (35)

Figure 5 plots mag(�) and rms(�) � 1� �
2� . We can see that for low SNR, rms(�) � � �. Due to

the complexity of (34), there does not seem to be a simple direct solution of the two equations. The

estimation of (34) and (35) can performed digitally. By quantising (34) and (35) into say eight bits

each, a 64K�8 lookup table can be used to output precomputed � values quantised to eight bits

each. Alternatively, the ratio of the square of (34) with (35) will give a single equation as a function

of � [35]. A smaller 256�8 lookup table can then be used to output �.

The value of A compared to the dynamic range of an analog to digital (A/D) converter can

greatly effect the decoded BER [36] (especially when the number of quantisation levels is small).

We shall assume that there are 2q � 1 quantisation regions with a central “dead–zone”. That is, a

quantised “0” ranges from –0.5 to 0.5. The largest quantised value is 2q�1 � 1 and ranges from

2q�1 � 1.5 to infinity. As shown in our demodulator model in Figure 4, we shall assume that the

demodulator scales the input by C before A/D conversion. In [36] computer simulations of the

Viterbi algorithm showed that C should be less than one. Also, as the SNR is decreased, the value

of A relative to the maximum quantised output should decrease as well. From Figure 4 we have that

the “optimum” value of A is

A � C(2q�1 � 1)
mag(�)

. (36)

12

Analysing the simulations in [36], we found that C = 0.65 should give near optimum performance.

However, for low � it may be necessary to reduce C (and thus A) to keep the lookup tables for the

E operand at a reasonable size.

For our BMC, it was decided to have q = 6 bit quantisation as a compromise between having

good performance and decoder complexity. Each MAP decoder could be programmed for either

rate 1/2, 1/3, or 1/4 operation. For rate 1/4 mode and zk = 0, this implied that the maximum BM value

is n(2q�1 � 1) � 124 where n is the number of coded bits. In turbo decoding mode, zk can range

from –128 to +127 which can greatly increase the maximum BM. Due to the limitation of the

number of bits to represent each SM, the maximum BM was therefore limited to 127.

One BM is calculated each CLK cycle with a two CLK cycle pipeline delay (one cycle to

determine the symbol and another cycle to perform the calculation). The BM is then passed onto

the FSMC and an SRAM for storage. The BM’s stored in the SRAM are then read out in reverse

order for the RSMC. Since 2� BM’s are calculated for N DCLK cycles, the total storage space

required is N2�. Although there are only 2n BM’s we chose to simply store and then later retrieve

the previously calculated BM’s for the RSMC.

Ideally, for the N = 216 turbo code in [6], the required memory storage is one megabyte (MB).

This was too large and too expensive to implement, and so it was decided to limit the storage space

to 64K. For � = 4 this implies that N = 212 = 4096. A simplistic storage technique is to write the new

data into one 64K RAM and read the old data from another 64K RAM. This requires a total of 128K

of RAM. We can halve the amount of RAM by using the circuit shown in Figure 6.

When CLK is high, the previously stored BM is read out from the RAM and then latched on

the falling edge of CLK. Simultaneously, a new BM is written into the RAM using the same address

when CLK goes low. Thus, in one clock cycle we perform a read, followed by a write. Since the

RAM address is inverted every N DCLK cycles, the BM’s are read out in reverse order. A control

signal to the CE input of the RAM is used to enable the storage of the new SM’s at the correct time.

In our design, two 35 ns 64K�4 separate I/O SRAM’s were used.

Our design could be programmed from 4 to 512 states, with a corresponding change in N from

16,384 to 128. However, to limit the decoding delay and storage requirements for the turbo decoder,

the maximum block size for 4 and 8 states was reduced to 4096.

B. State Metric Calculators

The architecture of the FSMC and RSMC are very similar. A 35 ns 1K�8 dual–port RAM is

used to retrieve old SM’s and store the new SM’s. With eight bit precision, the SM’s can range from

13

0 to 255. A further increase in precision would have greatly increased the complexity of the decoder.

Thus, it was decided that the SM’s would be represented by eight bits.

At the end of the previous block, the initial SM’s are stored into one side of the RAM. For the

FSM’s the SM for state 0 is set to zero and the other states are set to 255 (the closest value to infinity).

This corresponds to the sequence starting in state zero. For the RSM’s if the final state is unknown

all the initial SM’s are set to 0, otherwise they are initialised in the same way as the FSM’s.

To determine the read and write addresses for the SM’s we need to examine the implementation

of a rate 1/n systematic encoder. Berrou et al. [6] showed that a rate 1/2 systematic encoder can be

implemented using a shift register as shown in Figure 7. We have that Sk � �s0
k, s1

k, s2
k, ��� , s��1

k
	

corresponds to the current encoder state, Gi � �g0
i , g1

i , g2
i , ��� , g�

i
	 corresponds to the encoder code,

and gj
i
, sj

k
� { 0, 1} , for 0 � i � n� 1. We assume that g0

i � g�

i � 1 for 0 � i � n� 1 since

this ensures that the free Hamming distance leaving and entering a state is at least 2n.

For the forward SM’s, we need to determine b(dk�1, Sk) from (25). If we let

b(dk�1, Sk) � Sk�1 � �s1
k, s2

k, ��� , s��1
k , s0

k
	 (37)

then

Sk � �dk�1 � s0
k � s*

k, s1
k, s2

k, ��� , s��1
k

	 (38)

where

s*
k �

��1

j�1

gj
0
sj

k
mod 2. (39)

We can see that by reading two SM’s we can generate two new SM’s. Figure 8 gives a partial trellis

for a � � 4 code. Thus, in the next data clock (DCLK) cycle the previously stored SM’s are read

out one at a time using the following forward read address (ignoring the subscript k)

Rf � �s1, s2, ��� , s��1, s0	. (40)

A serial to parallel operation is performed and the two SM’s are stored in a register for two CLK

cycles. In the first CLK cycle, BM0 is added to the first SM and BM1 is added to the second SM

to form the first new SM. In the next CLK cycle, the BM’s are reversed to form the second new SM.

After a delay from reading and calculating the new SM’s (equal to five CLK cycles) the new SM’s

are written into the dual–port RAM with the following address (ignoring the subscript k)

Wf � �s0 � s* , s1, s2, ��� , s��1	. (41)

From (26), we need to determine f (dk, Sk) for the reverse direction. If we let

f (dk, Sk) � Sk�1 � �dk� s0
k � s*

k, s1
k, s2

k, ��� , s��1
k

	 (42)

14

then

Sk � �s1
k, s2

k, ��� , s��1
k , s0

k
�. (43)

Thus, in a similar way to the FSMC the read and write addresses for the RSMC are

Rr � �s0 � s* , s1, s2, ��� , s��1�. (44)

Wr � �s1, s2, ��� , s��1, s0�. (45)

Since there is a delay in calculating the new SM’s, we can’t use the read/write technique as used

for storing the BM’s. With a 1K�8 DP–RAM this implied the maximum number of states is 512

(half the memory size). The minimum number of states is 4 due to the restriction that g0
i � g�

i � 1.

Since the forward SM’s are used in the LLRC they also need to be stored and read out in reverse

order. A circuit very similar to the BM storage circuit is used to perform this task. The old forward

SM’s that are read from the DP–RAM are the values that are stored in two 64K�4 SRAM’s.

An important part of the SM calculator is the implementation of the adders and the E operand.

Figure 9 illustrates how the BM’s are added to the SM’s (similar to that in [37]). We see that the

previous minimum SM is subtracted from the BM’s before being added to the SM’s. The output of

the BM subtraction circuit has a two’s complement output (we limit the output so that the range is

from –128 to 127). The BM’s are then added to the SM’s (just as in the Viterbi algorithm). If the

BM is positive, the SM limiting circuit is enabled. However, if the BM is negative, the limiting

circuit is disabled to allow normal addition to occur. Since the BM can never be more negative than

the smallest SM, the resulting SM will always be positive.

Figure 10 illustrates the E operand circuit. As shown in (21) we need to find the minimum of

the two path metrics (PM) as well as the absolute difference. The carry–out of a subtraction circuit

(with carry–in set to 0) is used to select the smallest path metric. This carry out is also used to invert

the output of another subtraction circuit to give the absolute difference. When PM0 is greater than

PM1 the output of the subtractor will give the correct positive output when the carry–in is equal to

1. However, if PM0 is less than or equal to PM1 then the output will be negative. Normally, we would

have to invert the output and then add 1. However, by setting the carry–in to 0, we avoid the

additional adder circuit. This is why the carry–out of the first subtractor goes into the carry–in of

the second subtractor.

A circuit that uses a comparator, two multiplexers, and a subtractor can also be used to

implement the minimum and absolute difference functions [29]. In XC3100A logic this would

require at least 20 configurable logic blocks (CLB) to implement using eight bit arithmetic,

15

compared to 16 CLB’s for our design (since the XNOR’s can be absorbed into the second

comparator).

In order to keep the SM’s positive, we add c ln(2) to (21). Thus, if the absolute difference is

equal to zero, we add zero to the minimum, otherwise we add some small value. As determined

previously, the maximum value of f(z) is c ln(2). For a rate 1/7 code, Eb/N0 = –0.5 dB, and six bit

quantisation we have �2 �3.93 and using (36) A = 11.3 (which we round to 11). Thus

c � �
2A�2 � 21.6 and the maximum value of f(z) is 14.99 (15 after rounding). Thus only four bits

are required to represent f(z).

The smallest non–zero value of f(z) that results in 0 after quantisation is 0.5. Solving for f(z)

= 0.5 we have

z� � c ln�exp(0.5�c) � 1�. (46)

For the above conditions we have z = 81.2. Since f(z) monotonically decreases with z, all values of

f(z) for z� 81.2 will be less than 0.5 and so will be quantised to 0. Therefore, by limiting values

above 81 (the quantised value of 81.2) from the absolute difference circuit to 81, we only require

an 81�4 lookup table to implement f(z). In our design, we limited the maximum address space to

63 in order to reduce the design complexity. This implied from (46) that the largest value of c is

17.835 (giving z = 63.5). Thus, if the optimum value of A causes c to be more than 17.835, we reduce

A to give us the maximum c. For the above example this would be A = 9.08 (or 9 after rounding).

Figure 10 shows how the absolute difference output is limited to six bits and used to address

a 64�4 lookup table to determine f(z) + c ln(2). The table look–up output is then added to the

minimum circuit output. The adder output is limited to eight bits as shown. Just as in a Viterbi

decoder, limiting the outputs of the adders will cause some degradation in performance. However,

since it is the larger and thus less likely path metrics that are limited, this degradation will be very

small.

C. Log–Likelihood Ratio Calculator

For the computation of �i
k (EMi) we add the reverse path metric for bit i (RPMi) to the

corresponding forward SM that is read from the SRAM. This is shown in Figure 11. The summation

gives a nine bit result which is not limited. A most significant sign bit is also added due to the effect

of f(z) (in this case we cannot add c ln(2) because we are E summing more than one term). The

register is initialised to its maximum value (+511) to start the E summation (or “Eccumulation”).

We could have used a multiplexer to initialise the EMi register to the first summation. However,

to reduce complexity a simple limiting circuit was used. Since on the first E summation +511 is

16

usually much greater the first metric, the EMi register would be correctly initialised most of the

time.

We then find the minimum and absolute difference between the current register output and the

current metric (the summation of RPMi and SM). We then perform the standard look–up operation,

in this case subtracting the look–up result from the minimum. To decrease the delay between the

register output to its input, we also register the outputs of the abs–min circuit. This forced us to insert

a multiplexer after the first adder (the other input was the EMi output) to allow the correct EMi to

be calculated due to pipeline delay.

After the EMi’s have been finally calculated (which are done in parallel), we subtract EM1 from

EM0 and limit the output to +127 or –128 if necessary to give an eight bit result. An additional three

clock cycles are required to perform the final calculation. Since the LLR are calculated with the

reverse SM’s, the LLR’s are produced in reverse order. Thus, for a normal MAP decoder the output

needs to be reversed in time in blocks of N.

D. Decoder Performance

Since up to two clock cycles are required for the decoder to start, two for the BMC, five for

the SMC’s, and three for the LLRC, a total of 2� � 12 clock cycles are required. All the logic was

implemented in XC3100A–5 gate arrays which allowed a clock speed of fc = 10 MHz. The SRAM’s

were 35 ns in speed. Also, � bits were used to terminate the trellis which slightly reduces the speed

of the decoder. The decoder speed is given by

fd �
����

�

�

(212� �)fc
212(2� � 12)

: 2 � � � 4

(216�� � �)fc
216��(2� � 12)

: 5 � � � 9
. (47)

The slowest decoder speed is for � = 9 at 17.7 kbit/s and the fastest decoder speed is for � = 2 at

624.7 kbit/s. For � = 4 the speed is 356.8 kbit/s.

The SMC’s and LLRC were implemented in one XC3190A–5 (7500 gate equivalent). The

BMC was implemented in one XC3142A–5 (3700 gate equivalent) while two XC3130A–5’s (2700

gate equivalent) were used to implement the control logic and address generation (as well as some

additional functions for the turbo decoder). The encoder was implemented using an XC3142A–5.

Both the encoder and decoder can be programmed with any code with g0
i � g�

i � 1 through a

series of DIP switches.

To test the decoder performance, AWGN noise was generated on a PC using a C++ program.

The parallel port on the back of the PC was used to transmit eight bit quantised noise samples to

17

the decoder. An adder circuit in the encoder Xilinx chip adds the noise to the encoded signal. The

adder circuit produces a 6 bit quantised result with a dead zone and 63 quantisation regions. Various

noise generators were used, starting with one that had a period of 8.4�106 for the MAP decoder

tests, 2.1�109 for the rate 1/3 turbo decoder tests, and 2.3�1018 for the rate 1/7 turbo decoder tests.

This last decoder used the “standard” Lehmer uniform random number generator with multiplier

16807 and modulus 231–1 [38] together with the Box–Muller algorithm from [39, pp. 216–217] to

generate 223 eight bit quantised random numbers which are stored in RAM (after inputting A and

�). The dual 32 bit seed uniform random number generator from [40] was then used to randomly

select the numbers from RAM and send them to the encoder.

Figure 12 gives the performance of a rate 1/4, 512 state systematic code with code polynomials

g0 = 1753, g1 = 1547, g2 = 1345, and g3 = 1151 taken from [41]. The performance of the hardware

log–MAP decoder is plotted, along with the performance of the hardware sub–MAP decoder and

a software block Viterbi decoder. The signal amplitude A was fixed to 7 to avoid limiting the SM’s

too much. This is less than the “optimum” values for six bit quantisation, but with only eight bit

state metrics, SM limiting becomes more of a factor. At low BER, we can see that the

implementation loss is only 0.05 dB. Note that at low BER the ideal performance of the Viterbi and

MAP algorithms are almost identical which allows us to make a comparison. At high BER, the MAP

decoder gains about 0.5 dB over ideal Viterbi.

Also plotted on the graph is the sub–MAP decoder performance. This is where the E operand

is simplified to the min function. This was done by setting the lookup tables in the MAP decoder

to zero. The signal amplitude was also set to A = 7. As can be seen, at low BER the sub–MAP

performance is almost identical to the MAP decoder. However, the sub–MAP decoder always

performed worse than ideal Viterbi, losing about 0.3 dB at high BER.

Figure 13 shows the performance for a systematic rate 1/2, 16 state code with polynomials g0

= 37 and g1 = 21 from [6]. Since the rate loss from the tail bits is very small, we could compare our

decoder results with a software MAP decoder from [42]. The hardware MAP decoder closely

follows the computer simulation at high BER, losing 0.08 dB at low BER. The sub–MAP decoder

loses about 0.5 dB at high BER and closely follows the MAP decoder at low BER.

	��� � ��������	
�� �
�������	
�

The basic turbo encoder consists of two or more parallel concatenated systematic

convolutional encoders separated by an interleaver of size Ni . Figure 14 shows the general

implementation of a rate 1/3 turbo encoder from two constituent rate 1/2 encoders. The two coded

outputs can be punctured in order to obtain higher rates. The INT block is the interleaver and the

18

DEL block is a delay circuit with a delay equal to the MAP decoder delay. The DEL circuit is

required since the decoder for the interleaved data has to wait for the first decoder to output its data.

Thus, the received data has to be appropriately delayed. Instead of the decoder delaying the received

interleaved data, this delay is performed within the encoder, simplifying the decoder operation.

Figure 15 illustrates the basic decoding block in an iterative turbo decoder. In the first iteration

we do not need to add the APrP for dk to Axk. Since both dk = 0 or 1 are equally likely, we have that

z2
k = 0 (a superscript of 2 is used here as explained later) is added to Axk. We then decode the symbols

from the first encoder. The output from the first MAP decoder is �1
j � Axj � z1

j where the

superscripts indicates which MAP decoder was used, and j = k – Dd where Dd is the delay of the

MAP decoder. This data is then interleaved to match the interleaved symbols from the second

encoder.

The Axj � z1
j from the first MAP decoder is then fed into the second MAP decoder. In this case

we have let the extrinsic information from the first MAP decoder become the APrP for the second

MAP decoder. One can think of the first MAP decoder improving the SNR for Axj which effectively

results in a lower BER for d
^

k. The purpose of the interleaver is to randomise the “burst” errors that

are characteristic of MAP and Viterbi decoders. The larger the interleaver the more randomised are

the bursts of errors.

With an improved Axj, the second MAP decoder is able to correct even more errors. Its output

is

�2
i � z1

i � Axi � z2
i (48)

where z2
i is the extrinsic information from the second MAP decoder and the subscript i is used to

indicate the interleaved and delayed time index. We subtract z1
i � Axi from �2

i to obtain z2
i which

is then deinterleaved and passed onto another iteration as z2
k��

 (where � is the total delay of the

iteration). Just like in the second MAP decoder, this extrinsic information becomes the APrP for

the first MAP decoder in the next iteration. The deinterleaver serves to randomise the burst errors

from the second MAP decoder. Note that if we included z1
i with z2

i , the deinterleaver would produce

a delayed z1
j with “bursty” errors. Thus, feeding these bursty errors into the first MAP decoder will

result in very poor performance from the decoder.

In the next iteration the first MAP decoder output is

�1
j � z2

j � Axj � z1
j . (49)

19

In this case we subtract z2
j from �1

j to give the desired Axj � z1
j which is then fed into the second

MAP decoder as before. Again, we don’t want to include z2
j since after interleaving it would be

bursty again.

Obviously, in the first stage of decoding we want to obtain the lowest BER possible. However,

at low SNR’s a code’s performance may perform opposite to what is expected. An important

observation is that the more powerful a code is at low BER’s, the worse it performs at low SNR and

high BER’s [42]. Thus, we don’t want to choose too complex a code as iterative decoding will give

poor performance. However, we also don’t want to choose too weak a code (in terms of performance

at low BER) as latter stages of decoding will not be powerful enough to correct any further errors.

This was first noticed in [6] where a 16 state code was found to be optimal for a rate 1/2 turbo

decoder.

A. Decoder Implementation

The additional circuits required for a turbo decoder are the delays for z2
j and Axi � z1

i , the

interleavers and deinterleavers, the delay for Axk, Ay1
k, ��� , Ayn�1

k , an adder and two subtractors. For

the last stage of decoding the deinterleaver can be used to deinterleave the second MAP decoder

output with the addition of a multiplexer. With a rate 1/4 MAP decoder, a rate 1/7 turbo decoder

could be constructed. To reduce the number of inputs, the data was received serially, one symbol

at a time. Thus, BPSK modulation could be directly used, although with some modifications QPSK

could also be used.

Each MAP decoder has a maximum delay of 4096 bits and as shown later, each interleaver has

a maximum delay of 65,536 bits. Thus, the total delay for the seven symbols is 7�2�

(4096+65,536) = 974,848. Thus, six 1M�1 SRAM’s were used to delay the received data. The

MAP decoder was initially designed to have a 16K block size, and thus a 16K delay (for � = 2). With

this extra delay, six 256K�1 SRAM’s were included in the design, but are no longer necessary.

Also, two 16K�4 separate I/O SRAM’s were used for each of the z2
j and Axi � z1

i delays, although

two 4K�4 SRAM’s would be sufficient.

Since the interleaver and deinterleaver architecture are similar, we will only discuss the

implementation of the interleaver. For the interleaver we have used the same read/write technique

as used by the delay and reversing circuits elsewhere in the design (thus giving a delay equal to the

interleaver block size). The maximum interleaver size is the same as in [6], i.e., Ni = 64K. Thus,

only two 64K�4 separate I/O SRAM’s are required to implement the interleaver. However, the

interleaver address generating circuit is a little more complex and is shown in Figure 16. At startup

20

the SEL line goes high and the counter output is stored into the SRAM. The SRAM output is then

read out and latched by the D–FF’s. Using this address the data is sequentially stored into the

interleaver SRAM. At the same time SEL goes low and the interleaver address is read from the

EPROM and stored into the SRAM, to be read out in the next interleaver block. The process repeats,

interleaving the previous set of addresses.

Note that only one interleaver address generator (IAG) is implemented. Thus, only one set of

EPROM’s needs to be programmed with any interleaver that is desired. The time reversal of the

MAP decoder output can also be incorporated into the interleaver EPROM reducing the delay and

complexity of the decoder. Due to the two MAP decoder delays (equal to 8K), the interleaver

addresses between each iteration also has to be delayed. We used two 8K�8 SRAM’s to perform

this task. Since 8K�8 SRAM’s have common I/O, the circuit in Figure 17 was used to separate the

I/O and allow the read/write technique to be used.

A disadvantage of the above scheme is that if an error occurs in the address generator, error

propagation occurs and the decoder would have to be reset. However, in the many days of testing

we performed on our codec, the decoder never had to be reset due to the interleaver failing or any

other part of the decoder failing.

The first encoder sequence starts and ends in state zero through the use of a �–bit tail.

Interleaving is performed on all the information and tail bits. The second encoder sequence is also

made to start in state zero. However, to keep the same decoder architecture for the second MAP

decoder, the N bits are not forced to end in state zero. This implies that the final state is unknown.

The second MAP decoder takes this into account by initialising all the reverse state metrics to zero.

Figure 18 shows a photograph of the encoder and IAG’s. To the left hand side are seven DIP

switches used to program the code polynomials for both the encoder and decoder. The bottom

Xilinx chip performs the encoder function. The middle Xilinx chip is the address counter and

multiplexer for the IAG.

Figure 19 shows a decoder iteration. The first decoder prototype was implemented using

speedwire which allowed any design corrections to be easily made. This prototype was then

implemented on a printed circuit board. From the top, the Xilinx chips are the control logic and

address generator, MAP decoder 1, MAP decoder 2, data delay address generator and miscellaneous

logic (left), and branch metric calculator (right). The large chips to the left and right of the Xilinx

chips are the 1K�8 dual–port SRAM’s used to store the new and old state metrics (SM). The left

chips store the reverse SM’s and the right chips store the forward SM’s. To the left of the control

logic chip are the 64K�4 SRAM’s where we store the branch metrics to be used in calculating the

21

reverse SM’s. The four 64K�4 SRAM’s to the right of the control logic chip are used to store the

forward SM’s to be used in calculating the log–likelihood ratio. Between the bottom two Xilinx

chips are the 16K�4 SRAM’s for delaying the input and producing the extrinsic information. The

12 SRAM’s at the bottom left of the board are for delaying the n 6–bit inputs (six 256K�1 and six

1M�1 SRAM’s). The four 64K�4 SRAM’s at the bottom right hand corner perform the

deinterleaving and interleaving of the data.

Figure 20 is a photograph of the completed codec. A 6U high 48 cm rack is used which contains

from left to right, the encoder/interface card, turbo/MAP decoder card 1, interleaver address delay

card 1, turbo/MAP decoder cards 2 to 5, interleaver address delay card 2, and turbo/MAP decoder

cards 6 and 7. An additional 11 turbo/MAP decoder cards can fit within the rack to give a total of

18 iterations. Turbo/MAP decoder 7 has its switches in the up position, indicating the decoder is

set up for seven iterations. Each iteration can also output the first decoder output, using a 16K�4

SRAM from the second MAP decoder to reverse the data in time.

Note that our current decoder implementation is not able to automatically synchronise to a

received signal. Instead, a signal from the encoder was used to synchronise the decoder. Future

modifications may include a synchronisation word in the encoded block to allow synchronisation.

B. Turbo Decoder Performance

The first tests were made using a rate 1/3 turbo code using identical rate 1/2 16 state codes with

polynomials g0 = 31 and g1 = 33 (in octal) [43]. These code polynomials were optimised for rate

1/3 turbo codes and were found to perform better than the codes from [6] (which were optimised

for a rate 1/2 turbo code). The value of A was set to 15 for all Eb/N0, which is close to the optimum

values. An S = 31 [44], 65,536 bit interleaver was used (S = 31 implies that any two consecutive

bits are separated by at least 31 other bits after interleaving). The actual rate is reduced by 4092/4096

= 1023/1024 due to the MAP block size being only 4096 bits, with 4 bits used as the tail. The “inner”

code is terminated to state 0 while the “outer” code is not terminated. Shannon capacity at this rate

is at an Eb/N0 = –0.55 dB (the capacity at this rate with QPSK modulation is –0.49 dB).

In Figure 21 we plot BER versus Eb/N0 for 6.5 and 7 iterations (a half iteration is the output

of the first MAP decoder). We see that 10–5 and 10–6 is achieved at 0.32 dB and 0.38 dB,

respectively. This is 0.87 dB and 0.93 dB away from rate 1/3 capacity for BER’s of 10–5 and 10–6,

respectively. Unfortunately, 10–7 is close to an Eb/N0 of 1.0 dB due to the BER flattening above 0.4

dB. We also see that above 0.4 dB, the BER from 6.5 iterations performs better than 7 iterations.

This may be due to the second MAP decoder being unterminated or perhaps an effect of other

non–linearities in the decoder.

22

Also note how the performance shallows between 0.35 and 0.4 dB. There appears to be a

sudden change in slope. As can be seen, it is not an error floor since the BER does decrease with

increasing Eb/N0. The reason for this sudden change in slope is due to the small free distance of turbo

codes [46]. This free distance has a spectral component much less than one which greatly reduces

its error probability (in fact this reduction is inversely proportional to Ni [46]). However, since the

free distance term has a shallow slope, this slope will appear at relatively high Eb/N0.

Computer simulations for this scheme have not been previously performed. Thus, we make

a comparison to the rate 1/3, 16 state, and Ni = 16,384 scheme in [45]. With 11 iterations they

achieved an Eb/N0 of 0.24 dB at a BER of 10–5. This is 0.08 dB better than our scheme which has

7 iterations and an interleaver that is four times larger.

The first MAP decoder had mostly double bit error outputs at low BER. This is predicted in

[46] where the use of systematic convolutional codes leads to error sequences of information weight

two (corresponding to the error bit causing the sequence to leave the path and the error bit causing

the sequence to return to the path). This is very important for turbo codes since it greatly increases

its performance over the use of non–systematic encoders (which have single information bit error

patterns) [46]. Also, systematic encoders perform slightly better over non–systematic encoder at

low SNR [42] which is important in iterative decoding.

The output from the second MAP decoder at low BER’s was mostly in single bit errors,

indicating that the unterminated states could be causing a problem. Since there are Ni /N = 16 MAP

blocks in each interleaver block, the effect of all these unterminated states could induce these single

bit errors.

It was found that if the subtractor outputs in Figure 15 were limited to have a range from –128

to +127, the decoder would perform very poorly. When the extrinsic information is added to the

received noisy sample (which ranges from –31 to +31) errors could be introduced due to

non–linearities in the design. For example, say we receive +31 and add the extrinsic information

+127 to it. The output of the first MAP decoder will be limited to +127. When we subtract the

extrinsic information the information fed into the second MAP decoder will then be zero! The

results shown in Figure 15 had the subtractor outputs limited from –64 to +63 to avoid this problem.

In Figure 22 we plot BER against the number of iterations for Eb/N0 = 0.0, 0.1, 0.2, 0.3, 0.4,

0.5, and 1.0 dB. Of interest is how the BER suddenly flattens after quickly decreasing for 0.4, 0.5,

and 1.0 dB. Another point of interest is the potential of more iterations. The 0.2 dB curve indicates

that further improvement is possible and the 0.1 dB curve might be able to reach low BER’s as well.

23

Figure 23 shows the performance of our rate 1/7 16 state turbo decoder with code polynomials

g0 = 23, g1 = 35, g2 = 27, and g3 = 37 from [45]. To obtain better performance, the extrinsic

information subtractor outputs were limited from –96 to +95. The value of A was set to 7 to avoid

limiting the state metrics too greatly. The 64K interleaver from [24] was tried, but was found to give

inferior performance to our randomly generated interleaver (although it must be noted that this

interleaver was designed for a rate 1/2 turbo code).

An Eb/N0 of –0.30, –0.27, and –0.19 dB is achieved for BER’s of 10–5, 10–6, and 10–7,

respectively. Note that the 10–7 BER is achieved with 6.5 iterations. Shannon capacity at this rate

is at –1.12 dB, from which we are 0.82 dB away at a BER of 10–5. With more iterations, we expect

to reduce this gap by 0.1 to 0.2 dB.

��� � ��
�	
���������	
�� �
�� �
����
	��	�

A way of improving the decoding design is to use a continuous MAP decoder. A continuous

decoder does not need a tail to be added to the sequence and only needs to synchronise to the n coded

symbols. We will give a description of an efficient implementation of a continuous MAP decoder

along with a synchronisation technique that can be used for a turbo decoder.

A. Continuous Decoding

A continuous decoding algorithm for the MAP algorithm was first presented for the ISI

channel in [47] (with a complexity exponentially proportional to the decoder delay). A simpler

algorithm for continuous decoding of convolutional codes was first described in [48] and later in

[29,49,50]. A similar algorithm for the ISI channel is given in [51]. The n received data symbols

(Rk) are stored from time k to k + L – 1. They are then read out in reverse order from time k + L –

1 to k and �m
k�1 determined recursively (starting with �m

k�L � 1 for all m). The forward SM’s �m
k

are also calculated as normal using the Rk that have been delayed by 2L. Using �m
k , �i,m

k
, and �m

k�1,

�k is determined as normal. We then increment k by one and repeat the whole algorithm. By making

L sufficiently large, the �m
k�1 that is determined will be very close to the true �m

k�1 had �m
k�L been

known precisely. We can see that this algorithm is computationally intensive since each �m
k is

calculated L times instead of only once.

A computationally simpler algorithm was first mentioned in [18] and later in more detail in

[52–54]. As for the previous algorithm we store Rk into a RAM of size nL. The reverse SM’s are

then calculated (starting with �m
k�L � 1 for all m). However, the reverse SM’s continue to be

calculated from time k to k – L + 1 using the Rk from the reversing RAM. After the Rk have been

delayed by 2L (using another RAM of size 2nL) the forward SM’s are calculated and stored in a

24

RAM of size 2�L. The time reversed forward SM’s are combined with the last L reverse SM’s to

give a time reversed LLR output. We can see that only half the reverse SM’s that are calculated are

used. Thus, two reverse SM calculators are used in pipeline.

Figure 24 shows how Rk is stored and read for use by the reverse SMC’s. In this case we have

assumed that L = 64. The first RAM is used to time reverse Rk in blocks of L and the second RAM

is used to delay the reversed Rk by 2L. Two multiplexers are then used to alternatively select the

RAM outputs for use by the two RSMC’s.

Using the read/write technique, the total amount of RAM that is required is

5L � nq� L2�� 8 where we have assumed eight bit SM’s and LLR. An additional 2� � 8 bits

would be required if the output had to be reversed in time. This is still considerably less complex

than having L RSMC’s as in the previous algorithm. If the decoder is to be used in a turbo decoder,

this reversal can be performed within the interleaver. The total delay is 4L (with the LLR reverser)

or 3L (without the LLR reverser).

B. A Synchronisation Technique for Turbo Decoders

In a turbo decoder an important consideration is being able to synchronise to the interleaved

data of depth Ni . One could insert synchronisation words, but this increases complexity and

decreases the bandwidth efficiency. The first MAP decoder needs to only synchronise to n possible

states. This can be done by monitoring the average amplitude of Lk. When the decoder is out of

synchronisation, the average value of |Lk| will be lower than expected. This is due to the decoder

not receiving a valid code sequence and producing an unreliable decoded sequence.

By accumulating |Lk| for a certain length of time and comparing it to a threshold, the decoder

can make a reliable decision as to whether it is synchronised. If the decoder is not synchronised,

it tries the next state and then waits a decoder delay (in order for the decoder to produce stable data)

before it starts monitoring |Lk| again. This process continues until synchronisation is achieved.

The average synchronisation time (ts) depends on the decoder delay (td), the time to average

|Lk| (ta), and the number of synchronisation states (ns). Since we can randomly start in any state

(taking on average (ns� 1)�2 attempts before synchronisation is achieved) we have that

ts � (td � ta)(ns� 1)�2. (50)

The worst case synchronisation time is only twice the average synchronisation time. For a turbo

decoder we have

ts � (td � ta)(n� 1)�2� (Ni � td � ta)(Ni � 1)�2. (51)

The first part of (51) corresponds to the first MAP decoder and the second part to the second MAP

decoder. For large Ni , the synchronisation time will be dominated by the second MAP decoder.

25

For example, if td = 3L = 192, ta = 64, n = 2, and Ni = 65,536 then ts = 2,155,839,488 bits! At

2.048 Mbit/s is would thus take on average about 17.5 minutes to synchronise. Once synchronised,

one should increase ta so that the synchronisation circuit does not indicate a false alarm with very

high probability.

A way of reducing the overall synchronisation time is to evenly distribute the synchronisation

time between the two decoders. We could do this by adding modulo–2 a random binary sequence

of length L1 to the parity of the first individual code. This forces the inner decoder to synchronise

to nL1 states.

We also have that L1L2 = Ni (to keep the overall number of synchronisation states the same).

The outer decoder now needs only to synchronise to L2 states. The average synchronisation time

is then

ts � (td � ta)(nL1 � 1)�2� (Ni � td � ta)(L2 � 1)�2. (52)

One can then try various values of L1 and L2 to minimise (52). Assuming a real valued L2, the

optimum value of L1 is (taking the differential of (52) and setting to zero)

L1 �
Ni(Ni � td � ta)

n(td � ta)
� . (53)

For our example we thus have L1 = 2901.96 and L2 = 22.58. Since L1 and L2 must be integers we

let L1 = 2849, L2 = 23 and Ni = 65,527 = 216 – 9. From (52) we have ts = 1,452,829 bits, a nearly

1500 times reduction compared to the original scheme. At 2.048 Mbit/s, this corresponds to an

average synchronisation time of 0.709 seconds.

Alternatively, we could let L1 = 4096 and L2 = 16 which only slightly increases ts to 1,541,888

bits (a delay of 0.753 seconds at 2.048 Mbit/s). L1 = 2048 and L2 = 32 is only marginally slower

at 1,543,936 bits or 0.754 seconds.

��� � �����	�����

The original turbo coding paper by Berrou et al. [6] presented a coding scheme that came

within 0.7 dB of Shannon capacity. The MAP decoding algorithm that was presented was much too

complicated to implement practically. We have re–derived the MAP algorithm to present it in as

simple form as possible. By taking the logarithm of the MAP algorithm a realisable implementation

could be achieved at high data rates.

The turbo decoder that we have constructed has indeed been able to verify the amazing

performance presented in [6]. We were able to come within 0.8 dB of capacity with only seven

iterations. With up to 18 iterations we can expect to reduce this amount by 0.1 to 0.2 dB. Thus, we

have been able to demonstrate that near–Shannon performance can be achieved at high data rates.

26

We used a block type MAP algorithm which requires a lot of memory for its implementation.

An efficient implementation of a continuous decoder has been presented. Continuous decoders have

the advantage of being less complex, easier to synchronise, a much smaller delay, and have slightly

better performance.

A synchronisation technique for turbo decoders which takes advantage of the low delay of

continuous decoders has also been presented. It is shown that even for large interleaver sizes,

automatic synchronisation can be achieved in a relatively small time interval.

���
������	�
�

The author would like to thank Riccardo Macri for providing the AWGN noise generating

program.

������
��

[1] C. E. Shannon, “A mathematical theory of communications,” Bell Sys. Tech. J., vol. 27, pp.

379–423, July 1948 and pp. 623–656, Oct. 1948.

[2] P. E. McIllree, “Channel capacity calculations for M–ary N–dimensional signal sets,” M.Eng.

Thesis, Uni. of South Australia, Feb. 1995.

[3] J. P. Odenwalder, “Optimal decoding of convolutional codes,” Ph.D. dissertation, Uni. of

California, Los Angeles, CA, 1970.

[4] E. C. Posner, L. L. Rauch, and B. D. Madsen, “Voyager mission telecommunication firsts,”

IEEE Commun. Mag., vol. 28, pp. 22–27, Sep. 1990.

[5] S. Dolinar and M. Belongie, “Enhanced decoding for the Galileo low–gain antenna mission:

Viterbi redecoding with four decoding stages,” JPL TDA Progress Report, vol. 42–121, pp.

96–109, 15 May 1995.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error–correcting coding

and decoding: Turbo–Codes,” IEEE Int. Conf. Commun., Geneva, Switzerland, pp. 1064–

1070, May 1993.

[7] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv , “Optimal decoding of linear codes for minimizing

symbol error rate,” IEEE Trans. Inform. Theory, vol. IT–20, pp. 284–287, Mar. 1974.

[8] R. G. Gallager, “Low–density parity check codes,” IRE Trans. Inform. Theory, vol. IT–8, pp.

21–28, Jan. 1962.

[9] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm,” IEEE Trans. Inform. Theory, vol. IT–13, pp. 260–269, Apr. 1967.

27

[10] S. A. Barbulescu, W. Farrell, P. Gray, and M. Rice, “Bandwidth efficient turbo coding for high

speed mobile satellite communications,” Int. Symp. on Turbo Codes, Brest, France, pp.

119–126, Sep. 1997.

[11] G. Battail, “Pondération des symbols décodés par l’algorithm de Viterbi,” (in French), Annales

des Télécommun., vol. 42, pp. 1/1–1/8, Jan./Feb. 1987.

[12] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft–decision outputs and its

applications,” GLOBECOM’89, Dallas, Texas, pp. 47.1.1–47.1.7, Nov. 1989.

[13] J. Huber and A. Rüppel, “Zuverlässigkeitsabschätzung für die ausgangssymbole von trellis–

decodern,” (in German), AEÜ (Electronics and Communications), vol. 44, pp. 8–21, Jan./Feb.

1990.

[14] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft–output Viterbi decoder

architecture,” IEEE Int. Conf. Commun., Geneva, Switzerland, pp. 737–740, May 1993.

[15] J. Hagenauer, P. Robertson, and L. Papke, “Iterative (Turbo) decoding of systematic

convolutional codes with the MAP and SOVA algorithms,” ITG Tagung, Codierung für

Quelle, Kanal und Übertragung, Frankfurt, Germany, pp. 21–29, Oct. 1994.

[16] C. Berrou and G. Lochon, “CAS 5093 turbo–code codec,” data sheet, COMATLAS,

Chateaubourg, France, Nov. 1993.

[17] M. Jézéquel, C. Berrou, J. R. Inisan, and Y. Sichez, “Test of a turbo–encoder/decoder,” Turbo

Coding Seminar, Lund, Sweden, pp. 35–42, Aug. 1996.

[18] S. S. Pietrobon and S. A. Barbulescu, “A simplification of the modified Bahl decoding

algorithm for systematic convolutional codes,” Int. Symp. Inform. Theory & its Applic.,

Sydney, Australia, pp. 1073–1077, Nov. 1994.

[19] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub–optimal MAP

decoding algorithms operating in the log domain,” ICC’95, Seattle, WA, USA, pp. 1009–1013,

June 1995.

[20] R. W. Chang and J. C. Hancock, “On receiver structures for channels having memory,” IEEE

Trans. Inform. Theory, vol. IT–12, pp. 463–468, Oct. 1966.

[21] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing

symbol error rate,” IEEE Int. Symp. Inform. Theory, Asilomar, CA, p. 90, May 1972.

[22] P. L. McAdam, L. R. Welch, and C. L. Weber, “M.A.P. bit decoding of convolutional codes,”

IEEE Int. Symp. Inform. Theory, Asilomar, CA, p. 91, May 1972.

28

[23] P. Robertson, “Improving decoder and code structure of parallel concatenated recursive

systematic (turbo) codes,” Int. Conf. Universal Personal Commun., San Diego, CA, pp.

183–187, Sep.–Oct. 1994.

[24] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

Turbo–codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996.

[25] S. S. Pietrobon, “Implementation and performance of a serial MAP decoder for use in an

iterative turbo decoder,” IEEE Int. Symp. Inform. Theory, Whistler, British Columbia, Canada,

p. 471, Sep. 1995.

[26] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with parallel

structures for ISI channels,” IEEE Trans. Commun., vol. 42, pp. 1661–1671, Feb./Mar./Apr.

1994, Part III.

[27] W. Koch and A. Baier, “Optimum and sub–optimum detection of coded data disturbed by time

varying intersymbol interference,” GLOBECOM’90, San Diego, CA, pp. 1679–1684, Dec.

1990.

[28] E. Villebrun, “Turbo–decoding with close–to–optimal MAP algorithms,” TU Munich,

Diploma thesis, Sep. 1994.

[29] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft–output decoding algorithms in

iterative decoding of turbo codes,” JPL TDA Progress Report, vol. 42–124, pp. 63–87, 15 Feb.

1996.

[30] J. Petersen, “Implementierungsaspekte zur symbol–by–symbol MAP decodieurung von

faltungscodes,” ITG Tagung, Codierung für Quelle, Kanal und Übertragung., Frankfurt,

Germany, pp. 41–48, Oct. 1994.

[31] S. S. Pietrobon, “Discrete implementation of a NASA planetary standard Viterbi decoder,”

IREE Int. Electron. Conv. and Exhib., pp. 249–252, Sydney, Australia, Sep. 1987.

[32] S. S. Pietrobon and D. J. Costello, Jr., “A bandwidth efficient coding scheme for the Hubble

Space Telescope,” J. Electrical and Electron. Eng., Australia, vol. 13, pp. 275–282, Dec. 1993.

[33] Xilinx, “The programmable logic data book,” San Jose, CA, 1996.

[34] O. M. Collins, “The subtleties and intricacies of building a constraint length 15 convolutional

decoder,” IEEE Trans. Commun., vol. 40, pp. 1810–1819, Dec. 1992.

[35] T. A. Summers and S. G. Wilson, “SNR mismatch and on–line estimation in turbo decoding,”

IEEE Trans. Commun., vol. 46, pp. 421–423, Apr. 1998.

29

[36] I. M. Onyszchuk, K.–M. Cheung, and O. Collins, “Quantization loss in convolutional

decoding,” IEEE Trans. Commun., vol. 41, pp. 261–265, Feb. 1993.

[37] S. S. Pietrobon, J. J. Kasparian, and P. K. Gray, “A multi–D trellis decoder for a 155 Mbit/s

concatenated codec,” Int. J. of Satellite Commun., vol. 12, pp. 539–553, Nov.–Dec. 1994.

[38] S. K. Park and K. W. Miller, “Random number generators: Good ones are hard to find,”

Commun. of the ACM, vol. 31, pp. 1192–1201, Oct. 1988.

[39] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical recipes in C:

The art of scientific computing,” Cambridge University Press, Cambridge, 1988.

[40] P. L’Ecuyer, “Efficient and portable combined random number generators,” Commun. of the

ACM, vol. 31, pp. 742–749, 774, June 1988.

[41] P. J. Lee, “Further results on rate 1/N convolutional code constructions with minimum required

SNR criterion,” IEEE Trans. Commun., vol. COM–34, pp. 395–399, Apr. 1986.

[42] J. Y. Couleaud, “High gain coding schemes for space communications,” ENSICA Final Year

Report, Uni. of South Australia, Sep. 1995.

[43] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes,” IEEE

Trans. Commun., vol. 44, pp. 591–600, May 1996.

[44] D. Divsalar and F. Pollara, “Multiple turbo codes for deep–space communications,” JPL TDA

Progress Report, vol. 42–121, pp. 66–77, 15 May 1995.

[45] D. Divsalar and F. Pollara, “On the design of turbo codes,” JPL TDA Progress Report, vol.

42–123, pp. 99–121, 15 Nov. 1995.

[46] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel concatenated

coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409–428, Mar. 1996.

[47] K. Abend and B. D. Fritchman, “Statistical detection for communication channels with

intersymbol interference,” Proc. IEEE, vol. 58, pp. 779–785, May 1970.

[48] L.–N. Lee, “Real–time minimal–bit–error probability decoding of convolutional codes,”

IEEE Trans. Commun., vol. COM–22, pp. 146–151, Feb. 1974.

[49] K.–H. Tzou and J. G. Dunham, “Sliding block decoding of convolutional codes,” IEEE Trans.

Commun., vol. COM–29, pp. 1401–1403, Sep. 1981.

[50] X. Wang and S. B. Wicker, “A soft–output decoding algorithm for concatenated codes,” IEEE

Trans. Inform. Theory, vol. 42, pp. 543–553, Mar. 1996.

[51] Y. Li, B. Vucetic, and Y. Sato, “Optimum soft–output detection for channels with intersymbol

interference,” IEEE Trans. Inform. Theory, vol. 41, pp. 704–713, May 1995.

30

[52] S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,” Ph.D.

dissertation, Uni. of South Australia, pp. 23–24, Feb. 1996.

[53] S. S. Pietrobon, “Efficient implementation of continuous MAP decoders and a synchronisation

technique for turbo decoders,” Int. Symp. on Inform. Theory and its Applications, pp. 586–589,

Victoria, BC, Canada, Sep. 1996.

[54] A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder

for convolutional codes,” submitted to IEEE J. Sel. Areas Commun., Oct. 1996.

��
������
�����������
	�

ACS Add–Compare–Select

AGC Automatic Gain Control

APoP A Posteriori Probability

APrP A Priori Probability

AWGN Additive White Gaussian Noise

BER Bit Error Ratio

BM Branch Metric

BMC Branch Metric Calculator

BPSK Binary Phase Shift Keying

CE Clock Enable

CLB Configurable Logic Block

CLK Clock

CP Clock Input

CTL Control

D–FF Data Flip Flop

DCLK Data Clock

DEC Decoder

DEINT Deinterleaver

DEL Delay

DIP Dual Inline Package

DP–RAM Dual Port Random Access Memory

EM Eccumalator Metric

ENC Encoder

EPROM Erasable Programmable Read Only Memory

FSM Forward State Metric

31

FSMC Forward State Metric Calculator

I/O Input/Output

IAG Interleaver Address Generator

INT Interleaver

ISI Intersymbol Interference

LLR Log Likelihood Ratio

LLRC Log Likelihood Ratio Calculator

MA Multiply–Add

MAP Maximum a Posteriori

MB Megabyte

MUX Multiplexer

OE Output Enable

PC Personal Computer

PM Path Metric

QPSK Quadrature Phase Shift Keying

RAM Random Access Memory

RS Reed Solomon

RSM Reverse State Metric

RSMC Reverse State Metric Calculator

SEL Select

SISO Soft–In Soft–Out

SM State Metric

SMC State Metric Calculator

SNR Signal to Noise Ratio

SRAM Static Random Access Memory

SOVA Soft Output Viterbi Algorithm

WE Write Enable

XNOR Exclusive Negative OR

32

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4 5 6 7 8 9 10

K
 (

bi
t/s

ym
)

Eb/No (dB)

Galileo

Voyager

(2,1,6)

QPSK

(7,1,4;16,7,M)

(3,1,4;16,7,M)

TC1 TC2 TC3

(2,1,4;12,8,M)16QAM

TC1 = (2,1,4;16,18,M)
TC2 = (2,1,4;11,5,V)
TC3 = (2,1,3;10,2.5,V)

Shannon capacity
QPSK capacity

BER <= 1e-5

Figure 1: Shannon and QPSK capacity.

time k–1 k k+1

�0,b(0,m)
k�1

j � 0

j � 1 j � 1

j � 0

�1,b(1,m)
k�1

k

�m
k

�0,m
k

�1,m
k

�b(0,m)
k�1

�b(1,m)
k�1

�m
k

�f (0,m)
k�1

�f (1,m)
k�1

Figure 2: Graphical representation of calculation of �k
k and �m

k .

33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

f(
z)

z

Figure 3: f (z) versus z for c = 1.

�

�

E�|Vxk|�

x/y
x

y
Vmag(�)

Vxk

C

�

2q–1–1

�

Axk

AGC Model A/D Model

Demodulator Model
�

|Axk|

�

�

�

�
�

0.5

D1
k

D0
k

Branch Metric Model

Figure 4: Demodulator and Branch Metric Model

34

1

10

0.1 1 10

m
ea

n

sigma

rms(sigma)
mag(sigma)

Figure 5: Absolute mean and root–mean–square of received signal.

Q0 � Q11

Q12

DCLK

Depth
Counter

12

CLK

State
Counter

CP

CP

Q0 � Q3

12

16

4

WE CE

CLK CTL

CLK

CP
D Q

8 8BM
or

A0 � A15

Din Dout

CLK

LE

D Q
8 8

CLK = clock
CTL = control

64K�8 RAMold FSM

Figure 6: Branch and State Metric storage for block MAP decoder.

35

D D D D

g1
0 g2

0 g3
0 g��1

0

g1
1 g2

1 g3
1 g��1

1

dk

ck

s0
k s1

k s2
k s��1

k

Figure 7: Rate 1/2 systematic convolutional encoder.

Sk�1 Sk0

0

1

1

(s1, s2, s3, 0)

(s1, s2, s3, 1)

(s* , s1, s2, s3)

(s* , s1, s2, s3)

Figure 8: Sub–trellis for � � 4 rate 1/n systematic convolutional code.

A

B

Ci

S

1

A

B

Ci

S

1
min SM

BM0

BM1

7

8

88

8

7

A

B
S

Co

8

8

8

8

msb

8

A

B
S

Co

8

8

8

8

msb

8

SM0

SM1

PM0

PM1

Figure 9: BM and SM adder circuit.

36

A

B

Ci

S

0

A

B

Ci

S

PM1

PM0 8

8

88

8

8

8

A

B
S

Co

4
8

8

8
NSM

Co

8

I0

I1

S

O
8

8

NC

8
LIM LUT6

256 bit

8

4

A � B, Co = 1
A � B, Co = 0

Figure 10: Add–Compare–Select–E circuit.

A

B
S

SM

RPMi 8

8

8

A

B
S

Ci10
10

EMi

Co

LIM LUT
6

256 bit
4

0

10
A

B

abs

min

1

10

10

10

10

D Q

CP

clk

SR

init

10

6

Figure 11: Eccumulator circuit.

37

0.0001

0.001

0.01

.1

1

-3 -2 -1 0 1 2

B
E

R

Eb/No (dB)

Software Block Viterbi (N=128)
Hardware Block MAP (N=128, A=7)

Hardware Block sub-MAP (N=128, A=7)

Figure 12: Systematic rate 1/4, 512 state BER performance.

38

0.001

0.01

.1

1

-2 -1 0 1 2 3

B
E

R

Eb/No (dB)

Software MAP
Hardware Block MAP (N=4096)

Hardware Block sub-MAP (N=4096)

Figure 13: Systematic rate 1/2, 16 state (37,21) BER performance.

39

dk dk

INT

ENC1

ENC2

c1
k

c2
kDEL

Figure 14: Rate 1/3 turbo encoder.

�
� INT

DEL �

z2
k

z2
j Axi � z1

i

z2
i z2

k��

Axj � z1
j

DEC1
DEC2

d
^

i d
^

k��

DEL

+

_ DEL

+

_

DEINT

DEINT

Axk��

Ay1
k��

�

+

+ Axk� z2
k

Axk

Ay1
k

Ay2
k Ay2

k��

�1
j

�2
i

1

Figure 15: Iterative turbo decoder.

Q
CP

counter

OA

2�64K�8
EPROM

I1
I0 O

S

SEL

MUX

A
OD

WE

4�64K�4
SRAM

Q
CP

D–FF

Interleaver
Address

DCLK

D
16

16

16

16

16

16 16

Figure 16: Interleaver address generator.

40

Q
CP

counter

A
I/O

WE

2�8K�8
SRAM

Q
CP

D–FF

Delayed
Interleaver
Address

DCLK

D

13
16 16

Q

CP

D–FF

D
OE

1616Interleaver
Address

16

Figure 17: Interleaver address delay.

Figure 18: Turbo encoder and interleaver address generator.

41

Figure 19: Turbo decoder iteration.

Figure 20: Turbo codec.

42

1e-07

1e-06

1e-05

0.0001

0.001

0.01

.1

1

0 .2 .4 .6 .8 1

B
E

R

Eb/No (dB)

I = 6.5
I = 7

Figure 21: Rate 1/3, 16 state (31,33), Ni = 65,536 turbo decoder performance versus Eb/N0.

43

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

.1

1

0 1 2 3 4 5 6 7

B
E

R

Number of iterations

Eb/No = 0.0 dB
Eb/No = 0.1 dB
Eb/No = 0.2 dB
Eb/No = 0.3 dB
Eb/No = 0.4 dB
Eb/No = 0.5 dB
Eb/No = 1.0 dB

Figure 22: Rate 1/3, 16 state (31,33), Ni = 65,536 turbo decoder performance versus I.

44

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

.1

1

-.6 -.4 -.2 0 .2 .4

B
E

R

Eb/No (dB)

I = 6.5
I = 7

Figure 23: Rate 1/7, 16 state, Ni = 65,536 turbo decoder performance versus Eb/N0.

45

Q0–Q5

Q6

DCLK

6CP
6

6
WE

DCLK

DCLK

CP
D Q

A0–A5

I O

RAM

WE

DCLK

A0–A6

I O

DCLK

CP
D Q

RAM

7

6

7

7

LE
D Q

DCLK

I1

I0
O

S

I1

I0
O

SCP
D Q

DCLK

New Rk

Old Rk

Old Rk

Old Rk

nq nq nq nq

nq nq

nq

nq

nq

nq

nq
nq

nq

MUX

MUX
for RSMC 0

for RSMC 1

counter

Figure 24: Storage of Rk for reverse SM calculators.

