
Super Codes: A Flexible Multi–Rate Coding System

Steven S. Pietrobon

Small World Communications, 6 First Avenue, Payneham South SA 5070, Australia.
E–mail: steven@sworld.com.au

Abstract: We define super codes as the serial con-
catenation of punctured convolutional codes. Puncturing
pattern and interleaver design techniques are presented
so as to maximise the free distance of the code, and thus
the performance at very low bit error rates (BER). The
performance of super codes is compared to turbo codes.
For BERs around 10–5, turbo codes perform 0.1, 0.4, and
0.6 dB better than super codes for rates 3/4, 1/2, and 1/3,
respectively. However, due to the use of serial concatena-
tion, super codes have an interleaver gain of N–2, com-
pared to only N–1 for turbo codes and interleaver size N.
Thus, super codes are expected to perform significantly
better at BERs around 10–10.

Keywords: turbo coding, super coding, parallel concate-
nation, serial concatenation

1. INTRODUCTION
In this paper we investigate the use of punctured rate

1/2 systematic encoders in both serial and parallel con-
catenated encoders. Puncturing allows the same constitu-
ent decoder in an iterative decoder to be used for decod-
ing a variety of coding rates. We investigate three coding
rates, 1/3, 1/2 and 3/4, although other coding rates are
possible.

Parallel concatenated convolutional codes (common-
ly referred to as turbo codes) and iterative decoding tech-
niques with soft–in–soft–out (SISO) decoders [1,2] are a
powerful method of obtaining very high error control de-
coder performance with relatively moderate decoder
complexity. The complex rate 1/2 turbo code presented
in [3] was able to come within 0.55 dB of Shannon ca-
pacity for transmission of 1 bit/sym (information bits per
signalling interval). This gives a coding gain of 9.05 dB
compared to uncoded quadrature phase shift keying
(QPSK) at a bit error rate (BER) of 10–5. Less complex
turbo codes are able to achieve coding gains of around 7
dB.

A key to any turbo code decoder are SISO decoders
that individually decode the systematic encoders in a
turbo code. The best known SISO decoder is the maxi-
mum a posteriori (MAP) algorithm [4].

Serial concatenated convolutional codes (which we
call super codes) are an alternative technique for obtain-
ing high performance [5–7]. The main characteristic of

super codes is that they have a much lower error “floor”
than turbo codes. The floor is the performance region
where a steep fall in BER against Eb/N0 (energy ber bit
to single sided noise density ratio) changes to a much
more shallower slope. The gradual slope is caused by the
small free distance of turbo and super codes. By increas-
ing the free distance of a turbo or super code, this floor
can be lowered, usually at the expense of worse perform-
ance at higher BERs. Since the floor is not flat, at infinite
Eb/N0 the BER is zero.

The basic turbo and super code encoder architectures
will first be described. A method for tail–biting for super
codes is presented. Descriptions of various interleaving
techniques will also be given. Decoder implementation
and performance simulations of turbo and super codes are
then presented.

2. ENCODING
Before describing the turbo code encoder we will first

describe systematic recursive convolutional (SRC) en-
coders. This is followed by descriptions of tail–biting and
some interleaver designs.

2.1. SRC Encoders
The use of systematic recursive convolutional (SRC)

encoders is an important element of any turbo or super
code. In fact, the recursive nature of these codes is what
gives these codes their power [7–9]. The systematic part
is also important as punctured systematic codes perform
better than punctured non–systematic codes at higher
BERs [10] (important in iterative decoding). For super
codes, only the inner decoder needs to be recursive [7].

Figure 1 illustrates a rate 1/2 16 state SRC encoder
with code polynomials g0 = 238 and g1 = 318.

We have that xk is the input bit at time k and y0
k and y1

k

are the coded bits at time k. The state of the encoder is
given by the vector Sk� (s0

k, s1
k, s2

k, s3
k)

T. An important en-
coder parameter is the number of delay elements �. For
the encoder in Figure 1 � = 4. With continuous encoding
y0

k � xk for all k which makes the encoder systematic.

2.2. Block Coding With Tail
If the data is encoded into blocks of length N then

s0� sN� 0. That is, the encoder must start in state 0 at
the beginning of the block and end in state 0 at the end of

Modulo–2 Adder
(XOR)

D 1–Bit Delay
(DFF)DDDD

Figure 1: Rate 1/2 16 state systematic recursive convolutional encoder.

xk

y0
k

y1
k

vk

s0
k s1

k s2
k s3

k

wk

the block. Setting the initial state to zero is relatively sim-
ple and can be performed by resetting the encoder delay
elements to zero at time zero. To force the final state to
zero a sequence of � zero’s must be fed into the shift re-
gister in Figure 1. This is achieved by letting y0

k � vk for
k = N–� to N–1 (vk is the feedback term connected to the
multiplexer in Figure 1). These � bits are commonly re-
ferred to as the “tail”.

If the next block of data starts at time N then the en-
coder will already be in state zero. Thus, there is no need
to reset the encoder to state zero. If the block of data does
not have a tail (implying the final state is unknown) the
encoder must reset the state to zero for the start of the next
block.

2.3. Block Coding With Tail–biting
In tail–biting, the starting state is made to equal to the

final state and thus no tail is required. We can write that

Sk�1 � GSk � Xk (1)

where G is a � × � binary matrix and Xk is a v × 1 matrix
that is a function of the encoder inputs. For the encoder
in Figure 1 we have

G ��
�

�

0
1
0
0

0
0
1
0

1
0
0
1

1
0
0
0
�
	

, Xk ��

�

�

xk

0
0
0
�
	

. (2)

It was shown in [11] that if the starting and ending state
are identical, i.e., S0 = SN = Sc, then

Sc � (I� GN)�1S0
N (3)

where S0
N is the final state given that the starting state was

zero. In order that Sc is defined, we require that GN � I.
We can show that if the divisor polynomial g0(D) is a pri-
mitive, then the set {0,I,G,G2,..., G��1} is isomorphic
with GF(2�). Thus, GN � I iff 2�–1 does not divide N (for
� = 1, this implies that two state codes cannot be made
tail–biting). For example, the encoder in Figure 1 has a
primitive divisor polynomial and � = 4. Thus, if 15 does
not divide N, the encoder can be made tail–biting.

It was shown in [11] that

Sk � GkS0 ��
k

i�1

Gk�iX i�1 (4)

where addition is modulo–2. For S0 = 0,

S0
k ��

k

i�1

Gk�iX i�1. (5)

That is, assuming we start in state Sc, then

Sk � GkSc � S0
k. (6)

We also have the input/output equation

Yk � G�Sk � X�k (7)

where G� is an n × � binary matrix and X�k is an n × 1 ma-
trix that is a function of the encoder inputs. Thus we can
write

Yk � G�(GkSc � S0
k)� X�k . (8)

If we start from state 0, then

Y0
k � G�S0

k � X�k (9)

If we input the all–zero sequence, but start from state Sc,
then

Yc
k � G�GkSc. (10)

That is, Yk � Y0
k � Yc

k. If an interleaver follows the en-
coder, we can use this fact to reduce the encoding delay.
That is, we can encode starting from state 0, interleave
the data, and then add an interleaved version of (10).
Since Gk has a period of 2�–1, small lookup tables or cir-
cuits can be used to generate (10) based on the interleaved
address.

2.4. Turbo Code Encoder
Figure 2 illustrates the basic punctured turbo encoder

structure. The outputs y0
k and c1

k form the outputs of a rate
1/2 RSC. ENC1 represents the encoder circuitry in Figure
1 without the systematic and tail generating circuitry. The
double vertical lines represent a parallel to serial con-
verter. The parity output c1

k is punctured (with the punc-

Figure 2: Parallel concatenated punctured
convolutional (turbo code) encoder.

xk

�

c1
k

c2
k

ENC2

ENC1

y0
k

y1
k

x j

P1

P2
y2

k

turing pattern selecting one out of k1 bits) to give an over-
all rate of R1 = k1/(k1+1).

The information sequence xk is interleaved by � to
give the interleaved sequence xj. The interleaver is as-
sumed to take a block of size N with a mapping from k �
j, 0 � k, j � N–1. The interleaved output xj is fed into a
second RSC encoder (ENC2) to produce the parity se-
quence c2

k. The interleaved output is not transmitted since
it is equivalent to the original information sequence. As
for ENC1, c2

k is punctured to give a rate R2 = k2/(k2+1).
The two RSC encoders are commonly called the “consti-
tuent” encoders of a turbo encoder. The overall code rate
is given by

R � 1
1�R1� 1�R2� 1

� k
k� 2

(11)

if k = k1 = k2. For example, we can obtain code rates of
1/3, 1/2, and 3/4, and 7/8 with k1 = 1, 2, and 6, respective-
ly.

The design criteria used for the constituent codes is to
maximise dmin,2 (the smallest distance for an information
weight two sequence) [12,13]. This is quite different to
normal convolutional codes where the commonly used
design criteria is to maximise dmin (the minimum weight
of non–zero code words). Since the design criteria is the
same for both constituent codes this implies that the con-
stituent encoders should use the same codes.

Table 1 gives the best known constituent codes for �
= 4 and Ri = 1/2, 2/3 [12–15], and 3/4 to 15/16 (new re-
sults). Also listed are dmin,2 and dmin. The number in
brackets indicates the average number of paths for that
weight.

A peculiarity of punctured systematic codes is that the
trellis may have some zero weight paths where the start-
ing and final state are identical and not equal to zero. This
leads to zero weight cycles. Normally, this would mean
the code is catastrophic (infinite input gives finite out-
put). However, since the information weight is also zero
for these zero cycles, the code is not catastrophic.

These zero cycles are not desirable since the number
of neighbours will increase with block length, reaching
infinity for infinite size block length. Thus, we call these
codes quasi–catastrophic and indicate this in Table 1.

ENC2

ENC1

Figure 3: Serial concatenated punctured con-
volutional (super code) encoder.

xk

c1
k

c2
k

y0
k

y1
k

y j

P1

P2
y2

k
�

y�k

Table 1: Constituent codes for � = 4.

Ri g1 g0 dmin dmin,2 Quasi–
catastr.?

1/2 33 23 7(2) 12(1) no

1/2 31 23 6(1) 12(1) no

2/3 31 23 4(1/2) 7(1) no

3/4 31 23 3(1/3) 4(1/3) no

4/5 31 23 3(1) 4(3/4) yes

5/6 31 23 2(1) 2(1) yes

6/7 31 23 3(4/3) 3(1/3) yes

7/8 31 23 2(1/7) 2(1/7) yes

8/9 31 23 2(1/8) 2(1/8) yes

9/10 31 23 2(4/9) 2(4/9) yes

10/11 31 23 2(2.2) 2(2.2) yes

11/12 31 23 2(3/11) 2(3/11) yes

12/13 31 23 2(5/12) 2(5/12) yes

13/14 31 23 2(8/13) 2(8/13) yes

14/15 31 23 2(5/7) 2(5/7) yes

15/16 31 23 2(∞) 2(∞) yes

Some comment needs to be made about the codes
listed in Table 1. The rate 5/6 code has both dmin,2 = dmin
= 2 while the next higher rate has dmin,2 = dmin = 3. We
believe this is because the puncturing period divides 2��1

and the code is quasi–catastrophic. If the puncturing pe-
riod equals 2��1 then there are zero cycles for all non–
zero states (since there is a zero weight path that goes
through all non–zero states). Thus, all path weights will
have an infinite number of paths. Therefore, punctured
codes with rates 15/16 and above can be expected to per-
form very poorly.

A time–varying puncturing period maybe able to re-
duce this problem.

2.5. Super Code Encoder
A super code encoder is shown in Figure 3. The over-

all code rate is

R � R1R2 �
k

k� 2
(12)

if k2 = k1 + 1, k1 = k. Thus, for overall rates of 1/3, 1/2,
and 3/4 the outer code rate is 1/2, 2/3, and 6/7 and the
inner code is of rate 2/3, 3/4, and 7/8, respectively.

If tail–biting is used, the encoding technique de-
scribed previously can be used to decrease the encoding
delay of the outer decoder. For turbo codes, the technique
does not provide any advantage since the interleaver only
interleaves data bits.

Since high rate punctured codes are used in the super
code encoder, the codes given in Table 1 are also used for
super codes. The interleaver gain is given by

N��(dmin�1)�2� [7]. Thus, the interleaver gain is N–3 for k1
= 1 (we use the second code from Table 1), N–2 for k1 =
2,3,4,6 and N–1 for k1 = 5,7,8... Since we desire codes
with an interleaver gain of N–2 or better, we only consider
super codes with the outer code having dmin ≥ 3.

For some super codes, it may be preferable to have k2
= k1 – 1, k2 = k, e.g., R1 = 2/3 and R2 = 1/2 to give a R =
1/3 code. For k2 = 1 the interleaver gain is reduced to N–2.

2.6. Interleaving
An important parameter of a turbo code is the inter-

leaver size N. It can be shown that for turbo codes, the de-
coder bit error rate (or interleaver gain) is inversely pro-
portional to N [8,9]. Thus, one should try to make N as
large as possible within the constraints of complexity and
decoding delay.

Another important design parameter is the actual
interleaving pattern used. It has been found that with very
high probability, a randomly generated interleaver will
give very good performance. In fact, to analyse turbo and
super codes, performance bounds are averaged over all
possible interleaver patterns. For high SNR these bounds
are very close to actual measured performance of turbo
code decoders [7–9].

Various interleaver construction methods can be
found in [15–21]. We will present the most common con-
struction methods.

2.6.1. Pseudo Random

A pseudo–random interleaver pattern can be con-
structed by generating a sequence of random numbers be-
tween 0 and N–1. This can be efficiently done by forming
two arrays. The first array contains the interleaving se-
quence and is initially empty. The second array contains
the numbers 0 to N–1 in sequence. A uniform random
number between 0 and 1 is generated and multiplied by
the size of the second array (in this case N). The random
number is quantised to an integer and forms the address
for selecting the number from the second array which is
placed in the first array. The second array is then re-
shuffled so that it is of size N–1. Another random number

is generated between 0 and 1 and multiplied by the size
of the second array (in this case N–1). This forms the ad-
dress for the second array and the number selected is
placed into the first array. The process repeats until the
second array is empty and the first array is full. The first
array then forms the random interleaver pattern.

A problem with randomly generated arrays is that
they can have some very low weight error patterns that
are not correctable. Even though these patterns don’t
occur very often, this leads to the code having a small free
distance and thus have a BER curve that declines very
slowly with SNR.

2.6.2. S–random

An effective way of preventing the problems of a
pseudo–random interleaver is to use a spread or S–ran-
dom interleaver [22]. An S–random interleaver is gener-
ated in the same way as a random interleaver, except that
a test is performed on each randomly generated number.
If the difference between the random number and the pre-
vious S random numbers is between –S and S, the random
number is rejected and another random number is se-
lected until one is found that satisfies the criteria. This en-
sures that any pairs of bits that are less than S apart in time
are separated by at least S after interleaving.

Note that this algorithm is not always guaranteed to
complete. The larger the value of S the less likely that a
pattern can be found. We have found that a reasonable

value for S is to choose a value that is equal to�N0.438�.

2.6.3. Symmetric S–random

A significant implementation simplification can be
obtained by using a symmetric interleaver. A symmetric
interleaver has the property that if I � J, then J � I for
I, J � 0,...,N–1. This implies that the deinterleaving pat-
tern is exactly the same as the interleaving pattern. The
S–random property can also be applied to symmetric in-
terleavers.

With a random access memory (RAM), one can
usually perform a read followed by a write in a single
clock cycle at the same address location. Initially the data
would written in sequentially. The data would then be
read in interleaved order while new data is written in
interleaved order. The new data is then read out in se-
quential order (while the next block is also written in se-
quential order). This is equivalent to a deinterleave oper-
ation. However, since a deinterleave is equivalent to an
interleave for a symmetric interleaver, the new data is
correctly interleaved. Thus, a single memory can be used,
compared to two memories for a non–symmetric inter-
leaver (as shown in [24], a single memory can also be
used for non–symmetric interleavers, but complicated
address generating circuitry is required).

2.6.4. Interleaving for Punctured Codes

The encoders shown in Figures 2 and 3 are composed
of two punctured systematic encoders. We can see that if
we use a random interleaver, then due to the puncturing,
an information bit can have either none, one, or two parity
bits. This leads to an uneven protection of each of the in-
formation bits. That is, some bits will be protected more
than others.

To overcome this situation we should use an inter-
leaver that uniformly protects the information bits. The
first and simplest example of this is the odd–even inter-
leaver for rate 1/2 turbo codes [16]. In an odd–even inter-
leaver all the even positioned bits are mapped to even
positions and all the odd positioned bits are mapped to
odd positions. A rate 1/2 turbo code has puncturing pat-
terns of 10 and 01 for the first and second encoders. Thus,
this leads to each information bit having one parity bit
and an overall increase in performance compared to an
interleaver without this constraint.

In general, one should design the interleaver accord-
ing to the puncturing pattern used, trying to uniformly
spread the parity bits over the information bits.

For example, for turbo codes and k = 2, the puncturing
patterns (for the first and second convolutional encoder,
respectively) are 10 and 01. For k = 3, the patterns are 100
and 010 (100 and 001 are also possible, but they will give
the same performance). Assume bit position I maps to bit
position J. Thus, to keep an even distribution we have the
constraint that I mod 3 = J mod 3 (I mod 3 is the remain-
der after dividing I by 3). We shall call this a mod–3 inter-
leaver (similarly, an odd–even interleaver is a mod–2 in-
terleaver).

For k = 4, the puncturing patterns are 1000 and 0010,
i.e., every second bit will either have none or one parity
bit. Again, we have I mod 4 = J mod 4. We can loosen
this constraint for I mod 4 = 1 or 3. For these values of
I mod 4, J mod 4 = 1 or 3.

For any k and with puncturing patterns 100...00 and
0...010...0 (the 1 is in position k div 2) the mod–k inter-
leaver constraints are defined as

min(i, k� i)� min(j, k� j) (13)

where i = I mod k and j = J mod k. Note that this con-
straint is slightly different to the k = 3 constraint de-
scribed above. In this case, i = 1 or 2 can go to j = 1 or 2.
This will a give a more random interleaver, but at the ex-
pense of less uniformity in protecting the information
bits.

For super codes, the interleavers designed for turbo
codes can also be used. In this case, a mod–k2 interleaver
should be used. In general, the parity bit of the outer code
can be placed in any position. However, in order to use
a mod–k2 interleaver, the position of the parity bit is also
important and plays a part in designing the puncturing

pattern. As before, the puncturing patterns are designed
so as to provide uniform protection of the data bits.

Table 2 shows the order of the data and parity bits of
the outer code mod–k2 with the associated puncturing
pattern of the inner code for k1 = k = 1 to 6.

As can be seen, the pattern used depends on whether
k is odd or even. For k = 1, each data bit is followed by
its parity bit. Thus, the inner code pattern always selects
the data bit. For k = 2, a mod–3 interleaver fixes D0, while
D1 and P1 can alternate in position. Since D1 already has
a parity bit, we let the inner code puncturing pattern select
the parity bit for D0.

Table 2: Super code puncturing patterns (k1 = k)

k Outer Code Pattern Inner Code Pattern

1 D0P0 10

2 D0D1P1 100

3 D0D1P0D2 0100

4 D0D1D2P2D3 10000

5 D0D1D2P0D3D4 001000

6 D0D1D2D3P3D4D5 1000000

For k = 3 we let P0 be in position 2, since that position
is fixed in a mod–4 interleaver. The inner code selects
position 1 as D1 and D2 alternate in a mod–4 interleaver.
The other patterns can be constructed in a similar manner.

In general if k is odd, the outer code selects the parity
bit for data position 0 mod k and places it in position
[(k+1) div 2] mod (k+1). The inner code selects the parity
bit for data position (k div 2) mod (k+1).

For k even, the outer code selects the parity bit for data
position (k div 2) mod k and places it in position [(k div
2)+1] mod (k+1). The inner code selects the parity bit for
data position 0 mod (k+1).

If the turbo code data is continuously encoded then
the interleaver size N should be divisible by k (k2 for
super codes). This ensures that the correct puncturing
pattern is applied to each block of data. This restriction
is not required for data transmitted in blocks (this is be-
cause the encoder is reset at the beginning of each block).
If phase locked loops are used to generate the required
clocks, then it may also be desirable to have k or k2 divide
N for turbo and super codes, respectively.

The puncturing patterns for k2 = k super codes are in
general more complex than for k1 = k super codes. The
cases for k = 2 and 3 are relatively simple and are shown
in Table 3. In general, the outer code pattern will have a
period equal to the least common multiple of n1 and k2,
e.g., for k = 1 to 3, we have lcm(3,1) = 3, lcm(4,2) = 4,
lcm(5,3) = 15.

Software for generating a mod–k symmetric or non–
symmetric S–random interleavers can be found at [23].

Figure 4: Punctured turbo code decoder.

Rk

R0

R1

L0

DEC1

P1–1

R0
k

R1
k

+
–

+
+
+

R2
k

P2–1

R0

R1

L0

DEC2

+
–

�–1

�

� x^k

Z1
k Z2

k
+

Table 3: Super code puncturing patterns (k2 = k)

k Outer Code Pattern Inner Code Pattern

1 D0D1P1 1

2 D0D1P0D2 01

3. DECODER IMPLEMENTATION
A turbo code is far too complex to decode with a

single decoder. Instead, each convolutional code in the
turbo code is decoded separately with soft information
being passed from one decoder to the next in an iterative
fashion.

Let the encoder modulate a binary phase shift keyed
(BPSK) signal with additive white Gaussian noise
(AWGN). The received signal at time k is

R i
k � 1� 2y i

k � ni
k (14)

where y i
k � {0, 1}, i = 0,1 are the coded bits for a rate 1/2

systematic code (we can easily extend this to other rates),
and ni

k is the Gaussian distributed noise component with
zero mean and normalised variance �2. For a systematic
code y0

k = xk.
The term 1� 2yi

k implies that in two’s complement
notation, the most significant bit is equal to y i

k. We have

1
�

2 � 2R
Eb

N0
(15)

where Eb/N0 is the energy per bit to single sided noise
density ratio and R is the code rate.

The first step in iteratively decoding a turbo code is
to decode the data from the first encoder. We shall assume

that a maximum a posteriori (MAP) decoder [4] is used
to decode the individual codes in the turbo code. A MAP
decoder finds the most likely bit to have been transmitted
given a received noisy sequence (compared to say the
Viterbi algorithm which finds the most likely sequence).

Ignoring decoder delay, the output of a MAP decoder
in the log domain can be expressed as

Li
k � Wi

k � R i
k � Zi

k (16)

where Wi
k is the a priori information of y i

k and Zi
k is known

as the extrinsic information. The a priori information is
defined as

Wi
k �� ln�Pr(yi

k
� 1)

Pr(yi
k � 0)
�. (17)

Figure 4 illustrates a punctured turbo code decoder.
The decoders are implemented in the log–domain. In our
simulations we added a limiter circuit at the receiver to
simulate the limiting effect of digital demodulators. The
limiting amplitude is given by

R lim � (� 2��� e�1�2�2 � 1� 2Q(1��))�0.65 (18)

where Q(⋅) is the error function. This simulates the effect
of an automatic gain control circuit in the receiver [24].

We also have a gain and limiting function for the ex-
trinsic function. We found that with a large number of
iterations, having a gain less than one improves decoder
performance. For twelve iterations, a gain of 1/4 was used
with the output limited to ±Rlim.

Figure 5 shows a punctured super code decoder. In
this case the inner code is decoded first, followed by de-
coding the outer code.

Figure 5: Punctured super code decoder.

Rk

R0

R1

L0

DEC2

P2–1

R	
k

R2
k

+
–

+
+
+

R1
k

P1–1

R0

R1

L0

DEC1

 +

–

�–1

�

x^k

Z2
k

Z1
k

+

L1 P1

R0
k

Figure 6: BER for turbo and super codes with 12 iterations.

1e-005

0.0001

0.001

0.01

0.1

0 0.5 1 1.5 2 2.5 3

B
E

R

Eb/No (dB)

R=3/4 Super
R=3/4 Turbo
R=1/2 Super
R=1/3 Super
R=1/2 Turbo
R=1/3 Turbo

4. SIMULATION RESULTS
In all our simulations a block log–MAP decoder was

used. All the encoders added a tail which slightly reduces
the actual code rate. Code rates of 1/3, 1/2, and 3/4 were
simulated over an AWGN channel for both turbo and
super codes. Except for the rate 1/3 turbo code with g0 =
23 and g1 = 33, all codes used g0 = 23 and g1 = 31.

A maximum of up to 12 iterations were simulated. To
speed the decoding process, if two consecutive full iter-
ations gave zero errors, the algorithm was stopped. All

mod–k interleavers were symmetric with S = �N0.438�.
Interleaver sizes were 4080 for rate 1/2 and 3/4 super

codes with k2 = k. It was found that the rate 1/3 super code
with k2 = k performed only slightly better than the rate 1/2
super code. Improved performance was obtained with k1
= k. To keep the same data block size, the interleaver size
was reduced to 3060 for the rate 1/3 super code. Similarly,
to keep the same data block size, interleaver sizes were
2040, 2720, and 3497 for rate 1/3, 1/2, and 3/4 turbo
codes, respectively.

For the rate 1/3 super code, it was found that slightly
better performance was achieved by decoding the inner
code first, even though it is the more powerful code. To
obtain reliable frame and bit error rates, 64 frame errors

were counted (this is a better criteria than counting bit er-
rors since decoding errors occur in bursts). Some of the
simulation points below 10–5 BER have less than 10
frame errors due to excessively long simulation times.

Figure 6 shows the bit error rate (BER) of the turbo
and super codes that were obtained. For a BER of 10–5,
super codes perform 0.1, 0.4 and 0.6 dB worse than turbo
codes for rates 3/4, 1/2 and 1/3, respectively. It is ex-
pected that since the interleaver gain is N–2 for super
codes, compared to N–1 for turbo codes, that the super
codes will perform significantly better than the turbo
codes at a BER of 10–10.

5. CONCLUSIONS

A method has been presented of using punctured rate
1/2 recursive systematic convolutional codes in a serial
concatenated scheme. We call these codes super codes.
At moderate BERs, super codes perform worse than turbo
codes. However, it is expected that super codes will per-
form better than turbo codes at very low BERs.

A method has also been presented of using tail–biting
for serial concatenated codes that reduces encoder delay.
In our simulations, tails were added and block MAP de-
coding was used. Future work will investigate the use of

tail–biting, sliding–block MAP decoders, and data quan-
tisation.

REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima,

“Near Shannon limit error–correcting coding and
decoding: Turbo–Codes,” IEEE Int. Conf. Com-
mun., Geneva, Switzerland, pp. 1064– 1070, May
1993.

[2] C. Berrou and A. Glavieux, “Near optimum error
correcting coding and decoding: Turbo–codes,”
IEEE Trans. Commun., vol. 44, pp. 1261–1271,
Oct. 1996.

[3] C. Berrou, “Some clinical aspects of turbo codes,”
Int. Symp. Turbo Codes, pp. 26–31, Brest, France,
Sep. 1997.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol
error rate,” IEEE Trans. Inform. Theory, vol. IT–20,
pp. 284–287, Mar. 1974.

[5] L. C. Perez and D. J. Costello, Jr., “Serial concate-
nation of convolutional codes,” Int. Symp. on Com-
mun. Theory and Applic., pp. 338–344, Ambleside,
England, July 1995.

[6] J. Y. Couleaud, “High gain coding schemes for
space communications,” ENSICA Final Year Re-
port, Uni. of South Australia, Sep. 1995.

[7] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pol-
lara, “Serial concatenation of interleaved codes:
Performance, analysis, design, and iterative decod-
ing,” IEEE Trans. Inform. Theory, vol. 44, pp.
909–926, May 1998.

[8] S. Benedetto and G. Montorsi, “Unveiling turbo
codes: Some results on parallel concatenated cod-
ing schemes,” IEEE Trans. Inform. Theory, vol. 42,
pp. 409–429, Mar. 1996.

[9] L. C. Perez, J. Seghers, and D. J. Costello, Jr., “A
distance spectrum interpretation of turbo codes,”
IEEE Trans. Inform. Theory, vol. 42, pp.
1698–1709, Nov. 1996.

[10] M.–G. Kim, “On systematic punctured convolu-
tional codes,” IEEE Trans. Commun., vol. 45, pp.
133–139, Feb. 1997.

[11] C. Berrou, C. Douillard, and M. Jezequel, “Multi-
ple parallel concatenation of circular recursive sys-

tematic convolutional (CRSC) codes,” Annales des
Télécommun., vol. 54, pp. 166–172, Mar.–Apr.
1999.

[12] D. Divsalar and F. Pollara, “On the design of turbo
codes,” JPL TDA Progress Report, vol. 42–123, pp.
99–121, 15 Nov. 1995.

[13] S. Benedetto and G. Montorsi, “Design of parallel
concatenated convolutional codes,” IEEE Trans.
Commun., vol. 44, pp. 591–600, May 1996.

[14] M. S. C. Ho, S. S. Pietrobon, and T. Giles, “Improv-
ing the constituent codes for turbo encoders,” sub-
mitted to GLOBECOM’98, Feb. 1998.

[15] Ö. F. Açikel and W. E. Ryan, “Punctured turbo–
codes for BPSK/QPSK channels,” IEEE Trans.
Commun., vol. 47, pp. 1315–1323, Sep. 1999.

[16] S. A. Barbulescu and S. S. Pietrobon, “Interleaver
design for turbo codes,” Electronic Letters, vol. 30,
pp. 2107–2108, 8 Dec. 1994.

[17] S. A. Barbulescu and S. S. Pietrobon, “Terminating
the trellis of turbo–codes in the same state,” Elec-
tronic Letters, vol. 31, pp. 22–23, 5 Jan. 1995.

[18] J. D. Andersen and V. V. Zyablov, “Interleaver de-
sign for turbo coding,” Int. Symp. on Turbo Codes,
Brest, France, pp. 154–156, Sep. 1997.

[19] J. Hokfelt and T. Maseng, “Methodical interleaver
design for turbo codes,” Int. Symp. on Turbo Codes,
Brest, France, pp. 212–214, Sep. 1997.

[20] F. Daneshgaran and M. Mondin, “Design of inter-
leavers for turbo codes based on a cost function,”
Int. Symp. on Turbo Codes, Brest, France, pp.
255–258, Sep. 1997.

[21] M. S. C. Ho, S. S. Pietrobon, and T. Giles, “Inter-
leavers for punctured turbo codes,” IEEE Asia–Pa-
cific Conf. on Commun. and Singapore Int. Conf. on
Commun. Systems, vol. 2, pp. 520–524, Nov. 1998.

[22] D. Divsalar and F. Pollara, “Multiple turbo codes
for deep–space communications,” JPL TDA Pro-
gress Report, vol. 42–121, pp. 66–77, 15 May 1995.

[23] Small World Communications, “Random inter-
leaver generator,” Feb. 1998.
http://www.sworld.com.au/software/int.zip

[24] S. S. Pietrobon, “Implementation and performance
of a turbo/MAP decoder,” Int. J. Satellite Com-
mun., vol. 16, pp. 23–46, Jan.– Feb. 1998.

