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Abstract — New upper and lower bounds and approximations on the sequence, event,
first event, and bit error probabilities of convolutional codes are presented. Each of these
probabilities are precisely defined and the relationship between them described. Some of the
new bounds and approximations are found to be very close to computer simulations at very
high error ratios. Simple modifications to the traditional union upper bound are also
described for both hard and soft decision channelsthat allow better performance estimates

to be made.

Index Terms— Convolutional Codes, Bit Error Probability, Event Error Probability,

Upper Bounds, Lower Bounds.

I. INTRODUCTION

FUNDAMENTAL QUESTION of any error contr@gicheme is its probability of errdrhe

A probability of error determines the performance of the coding scheme. For convolu
codesthere are several ways of measuring the probability of dinereasiest to understand is the
bit error probability B,. This is the probability that a decoded information bit will be in e@drer
criteriaare also used.

With convolutional codes there does not appear to be a way of easily finding the code which
minimizesthe required ENg (signal to noise ratio per information bit) farspecified error
probability. Usually, code searches are performed whereby the performance of all possible codes

are found and the best code is then selected. The criteria that have been commonly used are:

a) maximize the minimum free Hamming or squared Euclidean distance [1,2,3],
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b) find the set of codes that satisfy a) and of those codes find the code that minimizes the number
of nearest neighbors [4,5], or

c) use the transfer function upper bound to mininttieerequired ENg for a specified bit error ratio
[6,7].

Of the above criteria, c) is the most accurate. Howehiris provided that the error ratio is
very low, for example, around 18 (for constraint lengths up tseven) or 16 (for constraint
lengthsgreater than seven). Since convolutional codes are commonly used as inner codes in
concatenatedystems [1] (so as to take advantage otifeerror correcting capability of atgrbi
decoderthecodes should be optimized for an error ratio of aroundtb0-3 (the outer code takes
this error ratio and produces an output error ratio oP 1@ 10-19).

If an output error ratio of $&°is desired from a concatenated scheme, only the low complexity
codesfound for an error ratio of 18in [6] can be said with high confidence to be optimal. Where
a concatenated output error ratio of-2@ desired (as in deep space communications)niotis
knownif the codes that have been found are optimal.

Thusit would be extremely advantageous if the requirgtgcould be accurately fourfdr
high error ratios (around 19 in a simplemannerA code search could then be performed to find
the best codes for use in a concatenated system.

We have the problem though of finding this probability of errfirst glance the problem
would appear to be simple as the encoders for many convolutional codes are simple in themselves
(consistingof a few delay and exclusive OR gates). Howewdren it comes to determining the
error probability (especially in an exact form) the revaappears to be true, it becomes extremely
complicated!One reason for this could be that the code sequences are of infinite length. For the hard
decisionchannel a considerable breakthrough was achieved in [8]. A Markovian technique was
usedto determine the probability of error exactly

In this paper we take a téfent approach to determining the probability of el start with
asimple code and examine #xjuence error probability Ps, event error probability Pe, first event
error probability P, and finally itsbit error probability P,. Clear mathematical definitions of these
probabilitiesare given. These definitions are used to derive new upper and lower bounds as well
asthe traditional upper and lower bounds. These bounds can be eseld isearches to find better
codes or prove that existing codes are the besshall also examine what is required to determine

the exact error probability so that a better understanding of convolutional codes can be obtained.



II. PROBABILITY OF SEQUENCE ERROR

Let us consider a binary rate Kinearconvolutional code withk binary delay elements in the
encoderSince the code is lineare can assume the all zero sequence is transmitted over an additive
white Gaussian noise channel and we wish to deterihime make an error at the decoder (using
a maximum likelihood decoding algorithm)eWay an event error occurs when the decoded path
leavesthe all-zero patland then returns. This can occur many times in a decoded sequence. A
sequencerror occurs when the decoded sequence is not the all zero path. Each possible sequence
errorhas one or more event errors.

Let the jth error event starting at time i be callgd@=<j < «, 0<i< »).

Example 1. For the two stateate 1/2 convolutional code with generator polynomials given by
do = 2g and g = 3g we have gp= 1+X+X3, & o= 1+X+X2+X5, g 1 = X2+X3+X5, etc. Figure 1

shows the trellis for these error events.

We say that the trellis in Figure 1 has a length N of two (corresponding to two information bits).
We define the sequence error probability\For a length N trellis as
Psn = P[NJ ((.I)J ej,i]' (1)
i=0 j=1
wheref(i) is the number of event errors starting at time i. The meawiitigis equation is best
explainedthrough an example.

Example 2: Let us consider the code given in Example 1 and the trellis in Figure de&\that
This s the probability thatsep or € 1 or & ois decoded due to errors on the channel. For a binary

symmetric channel (BMC) with channel error probability p, it is not tdacdif to determine this

probability. We can express (2) as
Ps2 = Pleyo) + Plep1Nerg) + Pleyoneronery). 3)

Thefirst term in (3) is very easy to determine. Singg leas a weight of three, an error will occur

if two or three channel errors occur in the first, second, and fourth bit positions. Thus
3
rlecd) = (32 — o) + (3o = 32 - 20° 4)

Note that Pg; = P(el,O)' The second term in (3) is a little morefidiflt to determine. The

correlationbetween €1 and g o must be takemto account. This is the probability of channel errors



causinge; 1 to be decoded and gto not be decoded. Examining the trellis in Figure 1, wehsee
the fourth bit position is a 1 for both gand g o. Let us assume that a O is received with probability

1-pin this position. ¢o will not be decoded if there are zero or one error in the first and second
positions (thisoccurs with probabilitf1 — p)? + 2p(1— p) = 1 — p?). e,1 will be decoded if
thethird and sixth bit positions are in error (this occurs with probalgfity The probability of all

theseevents occurring i€l — p)(1 — p?)p?. Now assume that a 1 is received in the fourth position
with probability p. e o will not be decoded if there are no errors in the first and sgoositions

andey ;1 will be decoded if therare one or two errors in the third and sixth bit positions. The

probability of these events occurring is(1 — p)%(2p(1 — p) + p?). Summing these two
probabilitieswe obtain

Plep1Nerg) = 3p%(1 — p)2 (5)
The third term in (3) is actually easier to determine than the second term. This is due to the high
correlationof e; g and g ; with & o. For & oto be decoded there must be two or more errors in bit
positionsl, 2, 3, and 6. W/can easily see that three or four errors in these posiisuiés in either
€1,00r g 1 also being decoded (contrary to what we want). Thus only two bit error patterns need
be considered. There are only four possible patterns, either one error in positions 1 or 2 and one
errorin positions 3 or 6. Howevghese errors only occur half the time since the number of errors
is exactly half the Hamming weigbt & o Position 4 must be a 0 (with probability 1-p) to ensure
thateither g gor g ;1 are not selected. &\dont need to consider the fifth bit position since an error

in this position does notfaict which path is selected. Therefore we have
Plexoneroners) = 20%(1 - p)° (6)
Summing (4) to (6) we obtain the exact expression for (3) as

Ps, = 8p% — 14p> + 9p* — 2p°. (7)

If one considers a length N trellis; is equivalent to the block error probabilitye., the
probability that the decoded sequence is not the all zero sequeaa@anmmediately see from
this that as N goes to infinitys = Ps . = 1 for any non—zero p, i.e., as N increases it becomes
more and more likely that we are goinghtve a sequence errdhus, it would appear that B
not very useful. Howevens will be shown in this and tiiellowing section R can provide very
usefulinformationon the determination of the event error probabiligydespite the fact that it is

equalto one).



To simplify the determination ofsRve note that
N-1 f()
Ps,Nzl_Pmm-eE' ®
i=0 j=1
Usingasymbolic programming language (such as Mathematica) the probability term in (8) can be
systematicallydetermined.

Example 3: For the two state code used in Examples 1 and 2 we have
Ps3 = (0,0,13,-30,25,-4,-5, 2),
Ps4 = (0,0,18,-45,18,81,-150,117,-45,7),

Pss = (0,0,23,-60,-18, 336,714, 792, -525, 208, —45, 4),

Pye = (0,0,28,-75, 31,302 _1713,2031, 251, 31 327, 262739 43,

where (8, a, &, a, ...) are the coditients of the polynomialay + a;p + a,p? + agp® + ...
From these equations we can see that theficaait for p? is equal to 5N-2 and for N > 2 the
coefficientof p3 is equal to —15(N-1). If we use the method in (3) for determiningten we see
thatthere are Nerms involving g¢;, N—1 terms involving £;, N-2 terms involving g;, etc. Thus
normalising R n by N can be thought of determinitite efect of just onejg, for 1 < j < « (as

N goes to infinity). V& can see that each of the terms involvipgvéll always have three error
patterns with two channel errors. Similatiye terms involving £; will always have on average

two error patterns with two channel errors. Thus thefimeft equation for pis true for all N. If

we assume the cdidient equation is true for3for N > 6 then

lim  Psp 9)
N oo N = 5P —15p +- -
Note that in reality (9) musbe equal to zero sincg R < 1. This would indicate that (9) is an
infinite degree polynomial with an infinite numberrobts ranging continuously from zero to one.

Fourierseries of various waveforms can also have this praperty

III. PROBABILITY OF EVENT AND FIRST EVENT ERROR
The event error probability £is a much more useful criteria than than the sequence error

probability Ps. We will discuss the first event error probabilityl&et

A. Event Error Probability

Pe is defined as the average probability that an event diveges from the all zero path at time

i andremegessome time later (assuming the all zero sequence is sent). Note that we only count



thoseerror event paths that leave and enter the all zeropattan infinite length sequence, i
thesame for all i. W can estimate thevent error probability of a length N decoded sequendgéh

N(e) event errors as:

N(e) (10)
N

Pe,N =

We have thaPe = Pe « andlADe = Ige,oo. The exact event error probability for a length N trellis can
thereforebe expressed as

Pen = & ;EN(e)P@), (11)

whereE is the set of possible decoded error sequences ahdisRfie probability of an error
sequence being decoded. Determiningl{lexactly appears to be much mordciit than finding

Ps n. The extra complication comes from having to know wianior events the decoder selects

for a particularchannel error sequence. For example, a long single event error may overlap two
shorterevent errorskor a particular channel error sequence, the more likely error events needs to
be selected, something which did not matter in determingpg($tnce multiple event errors were

all counted as one sequence error). Since e&chounted only once in determining i we have

the following theorem:

Theorem 1: The event error probabilitysRsatisfiesthe following lower bound

Psn 12
Pon = . (12)
Proof. The proof followsfrom (11), the fact thalN(e) = 1, and the fact that we can express

Ps,Nnas

Pon= > Pe). (13)

eckE

For R = P », (12) is not a very good lower bound since the right hand side is equal to zero!

Now that we’ve shown a way dietermining B exactly (albeit in a very complicated fashion)
we can now examine some other bounds O\ can see from (10) that for a rate 1/n convolutional
codewith memory m an upper bound fog Ris

PeNSﬁ |_NL+ vJ ’ (14)

min




whereLnmin is the shortest length error event path (notelthat = v + 1 for rate 1/n codes). The
right hand side of (14) is the maximum number of event errors we can have in a length N trellis.

Taking N to infinity we obtain a simple upper bound fgr P

Pe < . (15)

To determine Pfor p= 1 (which occurs when the received sequence is inverted on a noiseless
channel)we define thelensity o of an event error;éthe density is the same for all i) as

w(e)

p(e) = Tej)’ (16)

where w(g) is the Hamming weight and Ljas the length of e We say thatas densest if o(g)
is maximum out of all the possible error events.

Theorem 2. The event error probabilitysPor p = 1 is given by

Pe = _Iél_,
> L) (17)

jeA
whereA is the set of error events with maximum density
Proof. For p = 1, the received sequence consists of all ones. The decoder will find the code
sequencéhat is closest to the received sequence. The error events witlgtet larmber of ones
per event length will thebheselected, i.e., the densest error events. If there are two or more error
events with the same maximum densitye must average the lengths of these events.
Example 4: For the two state code used in previous examples the densest errig ueith

adensity of 1.5. Thusd*= 0.5 for p = 1 (which is equal with the upper bound in (15)).

If the all ones sequence is a code word the densest error event musalbertbe sequence
(with a maximum density of n for a rate 1/n code). The all ones sequence must have a length of
infinity, implying that (17) is equal to zero. This situation occurs for all rate 1/n codes that are
rotationallyinvariant to a 180phase rotation of a signal set (where by definition the codehaust

theall ones code sequence).

B. First Event Error Probability

Thefirst event error probability{Rs defined as the probability of leaving the all-zero path at
timei = 0 (assuming théeellis starts at time i = 0). 8/can estimate;®y averaging the number
of times a Merbi decoder chooses a non—zero path decision for state zefectnahon—zero path

decisionat time i is equivalent to leaving the all-zero path at time i = 0 (by reversing the sequences



in time). In comparison, to estimatg, lve needo wait for the decoder to produce a decoded
sequenceSince the decision at time 0 i$eetively independent of later decisions, we eapress

thefirst event error probability as

P (18)
Piv =P U gpol.
=1

where F(N) is the number of error events starting at time i = 0.
Simple upper and lower bounds can be found frd®). Using the union bound, an upper

boundfor P is

F(N)
Pin < D P(go), (19)
j=1
and a lower bound for forfR is
Pin = P(gy, (20)

where d = g,in is the minimum distance of the length N code ap@ @ne of the error events of
weight d.
We can see that in any decoded sequence, the error events that are selected will “block” other

errorevents that leave the all-zero path. Thus,

Pen = Prns (21)
and we form the traditional union bound ferN[9] by substituting (19) into (21)
F(N)
Pen = > P(gp), (22)

j=1
It must be said that (22) is a very poor bound fog.RVhen p = 1, the bound is equal to N, which
is much greater than 1. This bound does not take into account the correlation of the sequences for
high p (or even low p for some channels).

Example 5: For the two state code given in the previous examples we have

P, = (0,0,5.5,-7,2.5),

Pf,3 = (01 O! 55| _2| _14, 20, —105, 2),

_ o nll , 157249 183 67 5
Pf,4_ (01052!41 4 ) 4 ) 4 !4! g)!

We can see that the cfiefent of i is 5.5 which is 10% greater than the expected value.fai@s,
(21) is not asymptotically identical for low p for this code. For townedium p, the bound is not

very close to the simulation of;P



C. Lower Bounds and Approximations for P

The determination of a simple lower bound feridetter than (12) appearshie very dificult
for a number of reasons. One may think that a lower bound baged on the probability of the
most likely error event would be digfent (i.e., P(§ whereg has the smallest weight).e/¢an
immediatelysee from (15) that this cannot be so. Ferlp P(¢) = 1 which can be greater than the
upperbound in (15) (since L(gis greater than one for a trellis without parallel transitions). The
following is a derivation of an approximation fog. P

Considera length Nrrellis and error event @ith lengthL = L(e;) and probability? = P(e).

Let the code sequences consist of all possible combinatiojys .Of lee maximum number of that

canfit in the trellis is

- [ s

Theseerror events are independent of each otethe probability of each sequendgéh i event

errorsis P(1 — P)M~I. Thus, counting the probability of these code sequences, one would think

that a lower bound ongR is

PN = i(l\i/l)Pi(l — pM-

M — . .
- %z('\lﬂ_ 1)P‘(1 — pM-i

[ERN

Pi(1 — pM-1-

_ P(q) |_N tv | (24)

Taking the limit as N goes to infinity we obtain
: 1
P. = P(e). 25

For 180 rotationally invariant codes we can see that (25) violates (1@)l forite length ¢(where

Peis finite for p = 1, where as shown previoushjisequal to zero). This problem arises because
two or more of the error events may be decoded into a longer single error event for some error
sequences. Thug Bouldbe smaller than (25). This is illustrated for 186tationally invariant

codeswhere the all ones code sequence will always be decoded=ot.



Despitethe problems of (2%)eing an actual lower bound fog Bve can easily calculate it to
seehow it compares with other bounds and computer simulations. In this case we should choose
the most likely error event (i.e., the path with the smallest wejgh} dith the shortest length.

Example 6: For the two state code used in previous examples the most likely and only error

event is ¢ This event also has the shortest length. Thus
Pe = 1502 — pd, (26)

For small p,Peis not very tight. For p = 1 thougRe = Pe = 0.5.

One can obtain further improvementsRgby “filling in” the gaps of the sequences used in

thedetermination oPs For example, for the two state catie code sequences are combinations
of e1 o €1 2 € 4 etc. The fill in events are g, € 3, € 5 etc. These fill in events occprovided
that g »; don't occur or in general if the events that intersect withie; don't occur (in this case
e1,2i-cand & ). Thus, we can we write an “approximation” @ffér a length .= L(g) error event

as

-2
1 — ~N -
Pe = L_J P(qyo) + P(%ﬂ ejylﬂ ej,Lj) + -+ P[ rl ej,i ﬂ ej,Lj_lﬂ ej,LJ]]. (27)
|=
Example 7: For the two state code the approximation gtiging (27) is (with j = 1)

Pe = %(P(G_I_,O) + P(e N e1,1”‘91_,2))

= (0,0,3,-6,5,-2.5, 1). (28)
Noticethat the codicient of p? in (28) is the same as that producedsfach of the € terms in R .
We can continue th#illing in” process with other error events with similar equations to (27) to

improve the approximation ofsP

Example 8: For the two state code we can include three additional terms fsinee e has

length three). These terms are
P(eoneNeNe3Ne ) + P(EoNe Ne,NE 3N aNe, N5
+ P(e1Ne,Ne3Ne N6 NE 1Ne N8 3NE, )

= (0,0,6,-36,92,217 423 45113 211 47 3 5 1 (29)

4 4 732'32'16'16'32' 32"
The approximation to Hs then obtained by dividing (29) by three and adding it to (28)s&¢
thatthe coeficient for 2 is 5 (the same as in)Rand the coditient for p? is —18. Thusgor low p,

theapproximation should be very close to the actyalrfel will be asymptotically identical. Figure

10



2 plots the approximation of.@btainedrom (28), and that obtained from (28) and (29). The plot

for including the dects of @ and e (j = 2) is almost the same as the simulation for p < 0.15.

D. Upper Bounds
We can obtain an even tighter upper bound.toAN can expand \ as
F(N) ji—1
Pin = . P( ol ejyo). (30)
=1 \k=1
Forthe o term in (30) only the error events starting at time i = Gactuded. W can expand this
to include all the evergrrors that;g covers (the start and finish of these events lie between the start
andfinish of g). That is, we are excluding additional events that would preygritam being
decoded. LePy  be this new upper bound og R
Example 9: For the two state code we have
Pa1 = P(eo = 3p° — 2p°,
PY, =Pl + PEoneNe o = Pi, + 2(1 - p)’p?
Pas= Pay+ P@oNe N NEoNE1Nes 0 = Pay+ (1— p)*p’,
Py, = Pds+ 2(1— p)°p°.
For N > 1, the coéitient of ? is five, exactly what is expected. For N > 3, the ficient of p3
is 5, and for N > 5, the cd@fient of p# is —8. Notice that the additional term for each increasing
N is only a function of the nearest error path. Tikislue to the high correlation of the longer
sequencesvith the shorter sequences. Tlgtmost of the error sequences have already been
countedfor the shorter error events and there are only very few additional error events that need

to be counted. The best approximation fgisN = 2, but even thethe bound is not too close. The

approximatdower bound for j = 2 in Example 8 is much closer ¢o P

The example above indicates that an approximate upper bound may be found that is as simple
to determine as (22), that is more accurate, and thahetilivege. For a hard decision channel

we let this approximation be

[0 9]

NW w w w
Pi=Ple) + > W( [w/21)|0[ /211 —p)Lwr2l, (31)

W =pin

11



whereN,, is the number of paths of weight w excluding Eequation (31) is actually simpler to
determinethan (22) since only one binomial term netmbe determined for each set of paths of
weight w

Example 10: For the two state code this approximation gives theficimeft of p? as6, 20%
greaterthan the actual value (this is tlemme value as would be found from (22)). The
approximations alsogreater than one for ige values of p. Compared to a computer simulation,

this approximation is not very tight, but it is better than (22).

The approximation can be improved (with a small increase in the complexity of its

computationly making (31) more like the terms in Example 9. e.g.,

’ F(N) WJ
Pen = Pe) + sz( [w/2] +1)p[w"/ 2l@@—p)i~ w2l (32)
J:

where vy andl; are the weight and number of channel bits; ofesspectivelyWe have decreased

the number of possible combinations in how we make errors and introduced more (1-p) factors.
Example 11: Figure 3 pIotng:Nfor N = 2 to 4. For N > 1, the cdigfient of i is 5, making

the curves very accurate for low(gthough this may be just a coincidence for this code). Notice
that the curves do not exceed 1. This is dubeégl—p) factors reducing the probability for high

values of p.

Up to this point we havenly investigated hard decision channels, since these channels are
easierto analyze. Since (31) and (32) are fairly simple to compute, we can develop a similar
equationfor a soft decision channel with infinite quantization. For either BPSK or QPSK

modulationwe have for a single event
2wk E
P(%) = pq(Wj) = Q[ TJN—b], (33)
0
wherew; is the Hamming weight of and E/Ng is the enagy perbit to noise density ratio. #\et

anapproximation of Pfor soft decision errors be

[0 9]

Pd = pgWwy) + > Nu(pg(Ww) — pgw+1)) (34)

W =pin

12



IV. PROBABILITYOF BIT ERROR

An estimate of the probability of bit errop Por a length N trellis is

A N, (e
Pon = $’ (35)

where N, is the number of bit errors for an ersmquence. The exact bit error probability for a

length N trellis can therefore be expressed as

PoN = %Z N (e)P(€). (36)
e€E
SinceNy(e) = N(e) then
Pon = Pen (37)

Determiningthe exact R for a length N trellis is even morefititlt than finding R n. One needs

to determine only those channel error sequences that decode only into each error sequence.

A. Lower Bounds

The approximate lower bounds that were developed in the previous section can be used with
some modification as true lower bounds fgr=FF, .

Theorem 3: The bit error probability j?of a convolutional code is lower bounded by

b= L(eg)

where gis the error event with the smallest bit denNQ(ej)/L(ej).

Proof. The derivation of (38) is similar to the derivation of (25), except that we count the
numberof bits along the error event pathe\Whoose the event with thevest bit density as this
guaranteeghat the bound is satisfied. If any other events were to be selected they would have a
highervalue than that given by the lower bound. (For event error probability the lewarst

densityis defined as 1/L{g Since L(¢) can be equal to infinity the lower bound will equal 0.)

We can keep adding terms to (38) (from lower to higher bit density) in a similar way to the
lower bound approximation of;Ro obtain an even tighter lower bound gn P

Example 12: We use the two state code on a hard decision channel as in previous examples.
We form the lower bound with one information bit times téen in (28) and two information bits
timesone third the term in (29). \bbtain

L Anl99 266 143 92 113211 471 5 1. (39)
Po2 = (0,07, -8053%, =535, 5. =3 Ug " 48 "24'8' 28 48"

13



Herethe codicient of ? is 7 (the same as the exact solution found in [8]). For j = 2, the lower bound

is fairly close to simulations for low p. For higher p though, the boundggisdérom the simulation.

B. Upper Bounds

The traditional upper bound is formed from the union bound as given by (22). That is,

F(N)

Pon = O Ny(©)P(8). (40)

j=1
For some error evenij &e can see that there might be some error sequences that decode into a
sequencavith more bit errors. Howevgesince all possible error patterns for all the events are
countedthe upper bound in (40) is satisfied.

For high channel error ratios though, it is well known that (40) is not very fighhake the
boundtighter, we can use the tighter upper bounds and approximatiogghatRvere found in the
previoussection. These equations may not be true upper boundsendise we are assuming that
all the channel error sequences for each error event are decoded onlgmmtieaent (which may
not be the case). Thus we say these equations are approximations.

In forming these equations the first terprsbouldcorrespond to the path with one information
bit (or the impulse response of the encoder). This ensures, for p = 1, that the approximation to P
is equal to 1 for this value (otherwise the approximation will be greater than one).

Example 13: We will use theupper bound approximation that was found foinRhe previous

section.Using the two state code as in Example 9 we have

Ph1=P(eo = 3p? — 2p°,

P2, = P2, + 2P(g NeNe o = P2, + 4(1 - p)’p?
Phs=PRo+ BPENELINENE N 1 Nes) = PR, + 3(1— p)'p?,
P2, = P2, + 8(1— p)°p>.
The coeficient of p? is the same as determined by the lower bound, i.e.e?pIWPf)"N for N =

2to 4 in Figure 4. \& see than)"2 is closer to the simulation than the lower bound. This is opposite

to P where the lower bound approximation was closer than the upper bound.

The upper bound approximations fog §iven in (31), (32), and (34) can also be usedPfor

with the appropriate coiéfients to count the number of bits per error evArglight modification

14



of (34) was successfully used in [10] to find the best low rate convolutional codes for a concatenated
codingscheme.

Example 14: Again, we will use the tightest approximation as found in Examipl&ityure 5
plotsthe approximation for N = 2 to 4.&\éee that the approximation is very tight for p < 0.07 and
N = 2, becoming slightly looser for higher p.

V. CONCLUSIONS

We have investigated the sequence, first event, event, and bit error probability of convolutional
codes. Using the two state code on a binary symmetric chaarglve demonstrated many aspects,
someof them surprising, of the probability of error of convolutional codes.

UsingPs as a lower bound to,Pthe first codicient (and perhaps the second) for the siaie
codewas exactly found. It was shown that a non—trivial lower boundsfoolld not be found using
the probability of a single event error (although it was shown that a lower bound could be found
for P). Tighter upper bounds that were better than the traditional union upper bound were
investigatedUsing the two state code as an example, it was shown that we can easilyttighten
traditionalupper bounds without a & increase in complexity (for both hard and soft decision
channels)A new lower bound for §*has also been given.

It was found for the two state code that the lower bound approximation is clog¢han Ehe
tightest upper bound. Howevyéor R, thesituation reverses, with the upper bound approximation
beingcloser than the tightegtwer bound. Since s usually the desired parametdre upper
boundapproximation is a good indication of the cadperformancéif it can be determined).
Similarly to P, we can tighten the traditional uppkound to B very simply These new
approximationgould be used in code searches to find better codes than before, especially at higher

error ratios.

ACKNOWLEDGMENT
The author would like to thank ¥de Farrell of the Satellite Communications Research Centre

for providing the simulation results used in this paper

15



REFERENCES

[1] J. P Odenwalder“Optimal decoding of convolutional codes,” Ph.D. thesis, University of
California, LA, 1970.

[2] K. J. Larsen, “Short convolutional codes with maximum free distance for rates 1/2, 1/3, and
1/4,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 371-372, May 1973.

[3] E. Paaske, “Short binary convolutional codes with maxineal distance for rates 2/3 and 3/4,”
|[EEE Trans. Inform. Theory, vol. IT-20, pp. 683-689, Sep. 1974.

[4] R. Johannesson and E. Paaske, “Further results on binary convolutional codes with an optimum
distanceprofile,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 264—-268, Mat978.

[5] S. S. Pietrobon, R. H. DendA. Lafanechére, G. Ungerboeck, and D. J. Costellp, Jr
“Trellis—codedmultidimensional phase modulatiomEZEE Trans. Inform. Theory, vol. 36, pp.
63—-89,Jan. 1990.

[6] P. J. Lee, “New short constraint length, rate 1/N convolutional codes which minimize the
requiredSNR forgiven desired bit error ratedEEE Trans. Commun., vol. COM-33, pp.
171-177 Feb. 1985.

[7] P.J. Lee, “Further results on rate 1/N convolutional code construeiémsninimum required
SNR criteria,” IEEE Trans. Commun., vol. COM-34, pp. 395-399, Apt986.

[8] M. R. Best, M. VBurnasheyY. Lévy, A. Rabinovich, PC. Fishburn, A. R. Calderbank, and
D. J. Costello, Jr“On a technigue to calculate the exact performance of a convolutional code,”
IEEE Trans. Inform. Theory, vol. 41, pp. 441-447, Mat995.

[9] A. J. Mterbi and J. K. Omura, “Principles of digital communication and coding,” McGraw—
Hill, New York, 1979.

[10] S. S. Pietrobon, “Low rate convolutional codes optimised for use in concatenated datlecs,”

Symp. on Inform. Theory and its Applications, Sydney NSW pp. 19-24, Nav1994.

16



00 00 00

11
11 0

AN

10

Figure 1:Trellis for two state rate 1/2 convolutional code and N = 2.
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Figure 2: Probability of Event Error (lower bound approximation)
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 3: Probability of Event Error (union bound approximation)
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 4: Probability of Bit Error (upper bound approximation)
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 5: Probability of Bit Error (union bound approximation)
versus p for two state rate 1/2 convolutional code on BSC.
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Figure Captions:

Figure 1: Tellis for two state rate 1/2 convolutional code and N = 2.

Figure 2: Probability of Event Error (lower bound approximation) versus p for two state rate 1/2
convolutional code on BSC.

Figure 3: Probability of Event Error (union bound approximation) versus p for two state rate 1/2
convolutional code on BSC.

Figure 4: Probability of Bit Error (upper bound approximation) versus p fordtate rate 1/2
convolutionalcode on BSC.

Figure 5: Probability of Bit Error (union bound approximation) versus p for stede rate 1/2

convolutionalcode on BSC.
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