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On the Probability of Error of Convolutional Codes
Steven S. Pietrobon, Member, IEEE

Abstract — New upper and lower bounds and approximations on the sequence, event,

first event, and bit error probabilities of convolutional codes are presented. Each of these

probabilities are precisely defined and the relationship between them described. Some of the

new bounds and approximations are found to be very close to computer simulations at very

high error ratios. Simple modifications to the traditional union upper bound are also

described for both hard and soft decision channels that allow better performance estimates

to be made.

Index Terms — Convolutional Codes, Bit Error Probability, Event Error Probability,

Upper Bounds, Lower Bounds.

I.  INTRODUCTION

FUNDAMENTAL QUESTION of any error control scheme is its probability of error. The

probability of error determines the performance of the coding scheme. For convolutionalA
codes, there are several ways of measuring the probability of error. The easiest to understand is the

bit error probability Pb. This is the probability that a decoded information bit will be in error. Other

criteria are also used.

With convolutional codes there does not appear to be a way of easily finding the code which

minimizes the required Eb/N0 (signal to noise ratio per information bit) for a specified error

probability. Usually, code searches are performed whereby the performance of all possible codes

are found and the best code is then selected. The criteria that have been commonly used are:

a) maximize the minimum free Hamming or squared Euclidean distance [1,2,3],
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b) find the set of codes that satisfy a) and of those codes find the code that minimizes the number

of nearest neighbors [4,5], or

c) use the transfer function upper bound to minimize the required Eb/N0 for a specified bit error ratio

[6,7].

Of the above criteria, c) is the most accurate. However, this is provided that the error ratio is

very low, for example, around 10–3 (for constraint lengths up to seven) or 10–6 (for constraint

lengths greater than seven). Since convolutional codes are commonly used as inner codes in

concatenated systems [1] (so as to take advantage of the soft error correcting capability of a Viterbi

decoder) the codes should be optimized for an error ratio of around 10–2 to 10–3 (the outer code takes

this error ratio and produces an output error ratio of 10–5 to 10–10).

If  an output error ratio of 10–10 is desired from a concatenated scheme, only the low complexity

codes found for an error ratio of 10–3 in [6] can be said with high confidence to be optimal. Where

a concatenated output error ratio of 10–5 is desired (as in deep space communications) it is not

known if the codes that have been found are optimal.

Thus it would be extremely advantageous if the required Eb/N0 could be accurately found for

high error ratios (around 10–2) in a simple manner. A code search could then be performed to find

the best codes for use in a concatenated system.

We have the problem though of finding this probability of error. At first glance the problem

would appear to be simple as the encoders for many convolutional codes are simple in themselves

(consisting of a few delay and exclusive OR gates). However, when it comes to determining the

error probability (especially in an exact form) the reverse appears to be true, it becomes extremely

complicated! One reason for this could be that the code sequences are of infinite length. For the hard

decision channel a considerable breakthrough was achieved in [8]. A Markovian technique was

used to determine the probability of error exactly.

In this paper we take a different approach to determining the probability of error. We start with

a simple code and examine its sequence error probability Ps, event error probability Pe, first event

error probability Pf, and finally its bit error probability Pb. Clear mathematical definitions of these

probabilities are given. These definitions are used to derive new upper and lower bounds as well

as the traditional upper and lower bounds. These bounds can be used in code searches to find better

codes or prove that existing codes are the best. We shall also examine what is required to determine

the exact error probability so that a better understanding of convolutional codes can be obtained.
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II.  PROBABILITY OF SEQUENCE ERROR

Let us consider a binary rate k/n linear convolutional code with � binary delay elements in the

encoder. Since the code is linear, we can assume the all zero sequence is transmitted over an additive

white Gaussian noise channel and we wish to determine if we make an error at the decoder (using

a maximum likelihood decoding algorithm). We say an event error occurs when the decoded path

leaves the all–zero path and then returns. This can occur many times in a decoded sequence. A

sequence error occurs when the decoded sequence is not the all zero path. Each possible sequence

error has one or more event errors.

Let the j’th error event starting at time i be called ej,i (1�j��, 0�i��).

Example 1: For the two state rate 1/2 convolutional code with generator polynomials given by

g0 = 28 and g1 = 38 we have e1,0 = 1+X+X3, e2,0 = 1+X+X2+X5, e1,1 = X2+X3+X5, etc. Figure 1

shows the trellis for these error events.

We say that the trellis in Figure 1 has a length N of two (corresponding to two information bits).

We define the sequence error probability Ps,N for a length N trellis as

Ps,N� P����
N�1

i�0
�

f(i)

j�1

ej,i�
�
�
, (1)

where f(i) is the number of event errors starting at time i. The meaning of this equation is best

explained through an example.

Example 2: Let us consider the code given in Example 1 and the trellis in Figure 1. We see that

Ps,2� P�e1,0� e1,1� e2,0
�. (2)

This is the probability that e1,0 or e1,1 or e2,0 is decoded due to errors on the channel. For a binary

symmetric channel (BMC) with channel error probability p, it is not too difficult to determine this

probability. We can express (2) as

Ps,2� P�e1,0
�� P�e1,1� e1,0

�� P�e2,0� e1,0� e1,1
�. (3)

The first term in (3) is very easy to determine. Since e1,0 has a weight of three, an error will occur

if  two or three channel errors occur in the first, second, and fourth bit positions. Thus

P�e1,0
�� �3

2
�p2(1� p)� �3

3
�p3 � 3p2 � 2p3. (4)

Note that Ps,1� P�e1,0
�. The second term in (3) is a little more difficult to determine. The

correlation between e1,1 and e1,0 must be taken into account. This is the probability of channel errors
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causing e1,1 to be decoded and e1,0 to not be decoded. Examining the trellis in Figure 1, we see that

the fourth bit position is a 1 for both e1,1 and e1,0. Let us assume that a 0 is received with probability

1–p in this position. e1,0 will not be decoded if there are zero or one error in the first and second

positions (this occurs with probability (1� p)2 � 2p(1� p) � 1� p2). e1,1 will be decoded if

the third and sixth bit positions are in error (this occurs with probability p2). The probability of all

these events occurring is (1� p)(1� p2)p2. Now assume that a 1 is received in the fourth position

with probability p. e1,0 will not be decoded if there are no errors in the first and second positions

and e1,1 will be decoded if there are one or two errors in the third and sixth bit positions. The

probability of these events occurring is p(1� p)2(2p(1� p)� p2). Summing these two

probabilities we obtain

P�e1,1� e1,0
�� 3p2(1� p)2. (5)

The third term in (3) is actually easier to determine than the second term. This is due to the high

correlation of e1,0 and e1,1 with e2,0. For e2,0 to be decoded there must be two or more errors in bit

positions 1, 2, 3, and 6. We can easily see that three or four errors in these positions results in either

e1,0 or e1,1 also being decoded (contrary to what we want). Thus only two bit error patterns need

be considered. There are only four possible patterns, either one error in positions 1 or 2  and one

error in positions 3 or 6. However, these errors only occur half the time since the number of errors

is exactly half the Hamming weight of e2,0. Position 4 must be a 0 (with probability 1–p) to ensure

that either e1,0 or e1,1  are not selected. We don’t need to consider the fifth bit position since an error

in this position does not affect which path is selected. Therefore we have

P�e2,0� e1,0� e1,1
�� 2p2(1� p)3. (6)

Summing (4) to (6) we obtain the exact expression for (3) as

Ps,2� 8p2 � 14p3 � 9p4 � 2p5. (7)

If  one considers a length N trellis, Ps,N is equivalent to the block error probability, i.e., the

probability that the decoded sequence is not the all zero sequence. We can immediately see from

this that as N goes to infinity Ps � Ps,� � 1 for any non–zero p, i.e., as N increases it becomes

more and more likely that we are going to have a sequence error. Thus, it would appear that Ps is

not very useful. However, as will be shown in this and the following section Ps can provide very

useful information on the determination of the event error probability Pe (despite the fact that it is

equal to one).
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To simplify the determination of Ps we note that

Ps,N� 1� P���

N�1

i�0



f(i)

j�1

ej,i�
�
�
. (8)

Using a symbolic programming language (such as Mathematica) the probability term in (8) can be

systematically determined.

Example 3: For the two state code used in Examples 1 and 2 we have

Ps,3� (0, 0, 13, –30, 25, –4, –5, 2),

Ps,4� (0, 0, 18, –45, 18, 81, –150, 117, –45, 7),

Ps,5� (0, 0, 23, –60, –18, 336, –714, 792, –525, 208, –45, 4),

Ps,6� (0, 0, 28, –75, –317
4

, 3021
4

, –1713, 2031, –2541
2

, 371
2

, 327, –262,339
4

, –43
4

),

where (a0, a1, a2, a3, ���) are the coefficients of the polynomial a0 � a1p� a2p
2 � a3p

3 � ���

From these equations we can see that the coefficient for p2 is equal to 5N–2 and for N > 2 the

coefficient of p3 is equal to –15(N–1). If we use the method in (3) for determining Ps,N then we see

that there are N terms involving e1,i, N–1 terms involving e2,i, N–2 terms involving e3,i, etc. Thus

normalising Pe,N by N can be thought of determining the effect of just one ej,i, for 1 � j � � (as

N goes to infinity). We can see that each of the terms involving e1,i will always have three error

patterns with two channel errors. Similarly, the terms involving e2,i will always have on average

two error patterns with two channel errors. Thus the coefficient equation for p2 is true for all N. If

we assume the coefficient equation is true for p3 for N > 6 then

lim
N 
 �

Ps,N

N
� 5p2 � 15p3 ���� (9)

Note that in reality (9) must be equal to zero since Ps,� � 1. This would indicate that (9) is an

infinite degree polynomial with an infinite number of roots ranging continuously from zero to one.

Fourier series of various waveforms can also have this property.

III.  PROBABILITY OF EVENT AND FIRST EVENT ERROR

The event error probability Pe is a much more useful criteria than than the sequence error

probability Ps. We will discuss the first event error probability Pf later.

A.  Event Error Probability

Pe is defined as the average probability that an error event diverges from the all zero path at time

i and remerges some time later (assuming the all zero sequence is sent). Note that we only count
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those error event paths that leave and enter the all zero path. For an infinite length sequence, Pe is

the same for all i. We can estimate the event error probability of a length N decoded sequence � with

N(�) event errors as:

P
^

e,N� N(�)
N

. (10)

We have that Pe � Pe,� and P
^

e � P
^

e,�. The exact event error probability for a length N trellis can

therefore be expressed as

Pe,N� 1
N
�
��E

N(�)P(�), (11)

where E is the set of possible decoded error sequences and P(�) is the probability of an error

sequence � being decoded. Determining (11) exactly appears to be much more difficult than finding

Ps,N. The extra complication comes from having to know which error events the decoder selects

for a particular channel error sequence. For example, a long single event error may overlap two

shorter event errors. For a particular channel error sequence, the more likely error events needs to

be selected, something which did not matter in determining Ps,N (since multiple event errors were

all counted as one sequence error). Since each � is counted only once in determining Ps,N, we have

the following theorem:

Theorem 1: The event error probability Pe,N satisfies the following lower bound

Pe,N	
Ps,N

N
. (12)

Proof: The proof follows from (11), the fact that N(�) 	 1, and the fact that we can express

Ps,N as

Ps,N� �
��E

P(�). (13)

For Pe = Pe,�, (12) is not a very good lower bound since the right hand side is equal to zero!

Now that we’ve shown a way of determining Pe,N exactly (albeit in a very complicated fashion)

we can now examine some other bounds on Pe. We can see from (10) that for a rate 1/n convolutional

code with memory m an upper bound for Pe,N is

Pe,N� 1
N�N � �

Lmin
�, (14)
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where Lmin is the shortest length error event path (note that Lmin � �� 1 for rate 1/n codes). The

right hand side of (14) is the maximum number of event errors we can have in a length N trellis.

Taking N to infinity we obtain a simple upper bound for Pe.

Pe � 1
Lmin

. (15)

To determine Pe for p = 1 (which occurs when the received sequence is inverted on a noiseless

channel) we define the density � of an event error ej (the density is the same for all i) as

�(ej) �
w(ej)

L(ej)
, (16)

where w(ej) is the Hamming weight and L(ej) is the length of ej. We say that ej is densest if �(ej)

is maximum out of all the possible error events.

Theorem 2: The event error probability Pe for p = 1 is given by

Pe � |�|
�
j��

L(ej)
,

(17)

where � is the set of error events with maximum density.

Proof: For p = 1, the received sequence consists of all ones. The decoder will find the code

sequence that is closest to the received sequence. The error events with the largest number of ones

per event length will then be selected, i.e., the densest error events. If there are two or more error

events with the same maximum density, we must average the lengths of these events.

Example 4: For the two state code used in previous examples the densest error event is e1 with

a density of 1.5. Thus Pe = 0.5 for p = 1 (which is equal with the upper bound in (15)).

If the all ones sequence is a code word the densest error event must be the all ones sequence

(with a maximum density of n for a rate 1/n code). The all ones sequence must have a length of

infinity,  implying that (17) is equal to zero. This situation occurs for all rate 1/n codes that are

rotationally invariant to a 180° phase rotation of a signal set (where by definition the code must have

the all ones code sequence).

B.  First Event Error Probability

The first event error probability Pf is defined as the probability of leaving the all–zero path at

time i = 0 (assuming the trellis starts at time i = 0). We can estimate Pf by averaging the number

of times a Viterbi decoder chooses a non–zero path decision for state zero. In effect, a non–zero path

decision at time i is equivalent to leaving the all–zero path at time i = 0 (by reversing the sequences
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in time). In comparison, to estimate Pe, we need to wait for the decoder to produce a decoded

sequence. Since the decision at time 0  is effectively independent of later decisions, we can express

the first event error probability as

Pf,N � P����
F(N)

j�1

ej,0�
�
�
, (18)

where F(N) is the number of error events starting at time i = 0.

Simple upper and lower bounds can be found from (18). Using the union bound, an upper

bound for Pf,N is

Pf,N � �
F(N)

j�1

P(ej,0), (19)

and a lower bound for for Pf,N is

Pf,N 	 P(ed), (20)

where d = dmin is the minimum distance of the length N code and ed is one of the error events of

weight d.

We can see that in any decoded sequence, the error events that are selected will “block” other

error events that leave the all–zero path. Thus,

Pe,N� Pf,N, (21)

and we form the traditional union bound for Pe,N [9] by substituting (19) into (21)

Pe,N� �
F(N)

j�1

P(ej,0), (22)

It must be said that (22) is a very poor bound for Pe,N. When p = 1, the bound is equal to N, which

is much greater than 1. This bound does not take into account the correlation of the sequences for

high p (or even low p for some channels).

Example 5: For the two state code given in the previous examples we have

Pf,2 � (0, 0, 5.5, –7, 2.5),

Pf,3 � (0, 0, 5.5, –2, –14, 20, –10.5, 2),

Pf,4 � (0, 0,11
2

, 4, –157
4

, 249
4

, –183
4

, 67
4

, –5
2
),

We can see that the coefficient of p2 is 5.5 which is 10% greater than the expected value for Pe. Thus,

(21) is not asymptotically identical for low p for this code. For low to medium p, the bound is not

very close to the simulation of Pe.
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C.  Lower Bounds and Approximations for Pe

The determination of a simple lower bound for Pe better than (12) appears to be very difficult

for a number of reasons. One may think that a lower bound on Pe based on the probability of the

most likely error event would be sufficient (i.e., P(ej) where ej has the smallest weight). We can

immediately see from (15) that this cannot be so. For p = 1, P(ej) = 1 which can be greater than the

upper bound in (15) (since L(ej) is greater than one for a trellis without parallel transitions). The

following is a derivation of an approximation for Pe.

Consider a length N trellis and error event ej with length L � L(ej) and probability P� P(ej).

Let the code sequences consist of all possible combinations of ej,iL . The maximum number of ej that

can fit in the trellis is

M ��N � �
L �. (23)

These error events are independent of each other, so the probability of each sequence with i event

errors is Pi(1� P)M�i. Thus, counting the probability of these code sequences, one would think

that a lower bound on Pe,N is

P�
e,N� 1

N
�M
i�1

i�Mi �Pi(1� P)M�i

� M
N
�M
i�1

�M�1
i�1 �Pi(1� P)M�i

� MP
N
�M�1

j�0

�M�1
j �Pj(1� P)M�1�j

�
P(ej)

N �N � �
L(ej)�. (24)

Taking the limit as N goes to infinity we obtain

P�
e � 1

L(ej)
P(ej). (25)

For 180° rotationally invariant codes we can see that (25) violates (17) for all finite length ej (where

P�
e is finite for p = 1, where as shown previously Pe is equal to zero). This problem arises because

two or more of the error events may be decoded into a longer single error event for some error

sequences. Thus Pe could be smaller than (25). This is illustrated for 180° rotationally invariant

codes where the all ones code sequence will always be decoded for p � 1.
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Despite the problems of (25) being an actual lower bound for Pe, we can easily calculate it to

see how it compares with other bounds and computer simulations. In this case we should choose

the most likely error event (i.e., the path with the smallest weight dmin) with the shortest length.

Example 6: For the two state code used in previous examples the most likely and only error

event is e1. This event also has the shortest length. Thus

P�
e � 1.5p2 � p3. (26)

For small p, P�
e is not very tight. For p = 1 though, P�

e � Pe� 0.5.

One can obtain further improvements to P�
e by “filling in” the gaps of the sequences used in

the determination of P�
e. For example, for the two state code the code sequences are combinations

of e1,0, e1,2, e1,4, etc. The fill in events are e1,1, e1,3, e1,5, etc. These fill in events occur provided

that e1,2i don’t occur, or in general if the events that intersect with e1,2i–1 don’t occur (in this case

e1,2i–2 and e1,2i). Thus, we can we write an “approximation” of Pe for a length Lj = L(ej) error event

as

Pe � 1
L j
�
�
�

P(ej,0) � P(ej,0 � ej,1 � ej,L j
) ����� P���


L j�2

i�0

ej,i � ej,L j�1 � ej,L j
����
�
�
. (27)

Example 7: For the two state code the approximation of Pe using (27) is (with j = 1)

Pe � 1
2
�P(e1,0) � P(e1,0� e1,1� e1,2)�

� (0, 0, 3, –6, 5, –2.5, 1). (28)

Notice that the coefficient of p2 in (28) is the same as that produced for each of the e1,i terms in Ps,N.

We can continue the “filling in” process with other error events with similar equations to (27) to

improve the approximation of Pe.

Example 8: For the two state code we can include three additional terms for e2 (since e2 has

length three). These terms are

P(e1,0� e1,1� e1,2� e1,3� e2,1) � P(e1,0� e1,1� e1,2� e1,3� e2,0� e2,1� e2,3)

� P(e1,1� e1,2� e1,3� e1,4� e2,0� e2,1� e2,2� e2,3� e2,4)

� (0, 0, 6, –36, 92, –517
4

, 423
4

, –46,113
32

, 211
32

, –47
16

, 3
16

, 5
32

, – 1
32

). (29)

The approximation to Pe is then obtained by dividing (29) by three and adding it to (28). We see

that the coefficient for p2 is 5 (the same as in Ps) and the coefficient for p3 is –18. Thus for low p,

the approximation should be very close to the actual Pe and will be asymptotically identical. Figure
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2 plots the approximation of Pe obtained from (28), and that obtained from (28) and (29). The plot

for including the effects of e1 and e2 (j = 2) is almost the same as the simulation for p < 0.15.

D.  Upper Bounds

We can obtain an even tighter upper bound to Pe. We can expand Pf,N as

Pf,N � �
F(N)

j�1

P�
j�1

k�1

ek,0 � ej,0�. (30)

For the ej,0 term in (30) only the error events starting at time i = 0 are excluded. We can expand this

to include all the event errors that ej,0 covers (the start and finish of these events lie between the start

and finish of ej,0). That is, we are excluding additional events that would prevent ej,0 from being

decoded. Let Pu
e,N be this new upper bound on Pe,N.

Example 9: For the two state code we have

Pu
e,1� P(e1,0) � 3p2 � 2p3,

Pu
e,2� Pu

e,1� P(e1,0� e1,1� e2,0) � Pu
e,1� 2(1� p)3p2,

Pu
e,3� Pu

e,2� P(e1,0� e1,1� e1,2� e2,0� e2,1� e3,0) � Pu
e,2� (1� p)4p3,

Pu
e,4� Pu

e,3� 2(1� p)6p3.

For N > 1, the coefficient of p2 is five, exactly what is expected. For N > 3, the coefficient of p3

is –5, and for N > 5, the coefficient of p4 is –8. Notice that the additional term for each increasing

N is only a function of the nearest error path. This is due to the high correlation of the longer

sequences with the shorter sequences. That is, most of the error sequences have already been

counted for the shorter error events and there are only very few additional error events that need

to be counted. The best approximation for Pe is N = 2, but even then the bound is not too close. The

approximate lower bound for j = 2 in Example 8 is much closer to Pe.

The example above indicates that an approximate upper bound may be found that is as simple

to determine as (22), that is more accurate, and that will not diverge. For a hard decision channel

we let this approximation be

Pa
e � P(e1) � ��

w�dmin

Nw

2(w�1) mod 2
� w
�w�2��p�w�2�(1�p)�w�2�, (31)
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where Nw is the number of paths of weight w excluding e1. Equation (31) is actually simpler to

determine than (22) since only one binomial term needs to be determined for each set of paths of

weight w.

Example 10: For the two state code this approximation gives the coefficient of p2 as 6, 20%

greater than the actual value (this is the same value as would be found from (22)). The

approximation is also greater than one for large values of p. Compared to a computer simulation,

this approximation is not very tight, but it is better than (22).

The approximation can be improved (with a small increase in the complexity of its

computation) by making (31) more like the terms in Example 9. e.g.,

Pa�
e,N� P(e1) ��

F(N)

j�2

1
2(wj�1) mod 2

� wj

�wj�2��1�p�w j�2�(1�p)lj��w j�2�, (32)

where wj and lj are the weight and number of channel bits of ej, respectively. We have decreased

the number of possible combinations in how we make errors and introduced more (1–p) factors.

Example 11: Figure 3 plots Pa�
e,N for N = 2 to 4. For N > 1, the coefficient of p2 is 5, making

the curves very accurate for low p (although this may be just a coincidence for this code). Notice

that the curves do not exceed 1. This is due to the (1–p) factors reducing the probability for high

values of p.

Up to this point we have only investigated hard decision channels, since these channels are

easier to analyze. Since (31) and (32) are fairly simple to compute, we can develop a similar

equation for a soft decision channel with infinite quantization. For either BPSK or QPSK

modulation we have for a single event

P(ej) � pq(wj) � Q�
�
�

2wjk
n

Eb
N0

� �
�
�
, (33)

where wj is the Hamming weight of ej and Eb/N0 is the energy per bit to noise density ratio. We let

an approximation of Pe for soft decision errors be

Pq
e � pq(w1) � ��

w�dmin

Nw�pq(w) � pq(w�1)�. (34)
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IV.  PROBABILITY OF BIT ERROR

An estimate of the probability of bit error Pb for a length N trellis is

P
^

b,N �
Nb(�)

N
, (35)

where Nb is the number of bit errors for an error sequence �. The exact bit error probability for a

length N trellis can therefore be expressed as

Pb,N � 1
N
�
��E

Nb(�)P(�). (36)

Since Nb(�) 	 N(�) then

Pb,N 	 Pe,N. (37)

Determining the exact Pb,N for a length N trellis is even more difficult than finding Pe,N. One needs

to determine only those channel error sequences that decode only into each error sequence.

A.  Lower Bounds

The approximate lower bounds that were developed in the previous section can be used with

some modification as true lower bounds for Pb = Pb,�.

Theorem 3: The bit error probability Pb of a convolutional code is lower bounded by

Pb 	
Nb(ej)P(ej)

L(ej)
. (38)

where ej is the error event with the smallest bit density Nb(ej)�L(ej).

Proof: The derivation of (38) is similar to the derivation of (25), except that we count the

number of bits along the error event path. We choose the event with the lowest bit density as this

guarantees that the bound is satisfied. If any other events were to be selected they would have a

higher value than that given by the lower bound. (For event error probability the lowest event

density is defined as 1/L(ej). Since L(ej) can be equal to infinity the lower bound will equal 0.)

We can keep adding terms to (38) (from lower to higher bit density) in a similar way to the

lower bound approximation of Pe to obtain an even tighter lower bound on Pb.

Example 12: We use the two state code on a hard decision channel as in previous examples.

We form the lower bound with one information bit times the term in (28) and two information bits

times one third the term in (29). We obtain

Pl
b,2 � (0, 0, 7, –30,199

3
, –266

3
, 143

2
, –92

3
, 113

48
, 211

48
, –47

24
, 1
8

, 5
48

, – 1
48

). (39)
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Here the coefficient of p2 is 7 (the same as the exact solution found in [8]). For j = 2, the lower bound

is fairly close to simulations for low p. For higher p though, the bound diverges from the simulation.

B.  Upper Bounds

The traditional upper bound is formed from the union bound as given by (22). That is,

Pb,N � �
F(N)

j�1

Nb(ej)P(ej). (40)

For some error event ej we can see that there might be some error sequences that decode into a

sequence with more bit errors. However, since all possible error patterns for all the events are

counted, the upper bound in (40) is satisfied.

For high channel error ratios though, it is well known that (40) is not very tight. To make the

bound tighter, we can use the tighter upper bounds and approximations to Pe that were found in the

previous section. These equations may not be true upper bounds on Pe because we are assuming that

all the channel error sequences for each error event are decoded only to that error event (which may

not be the case). Thus we say these equations are approximations.

In forming these equations the first term e1 should correspond to the path with one information

bit (or the impulse response of the encoder). This ensures, for p = 1, that the approximation to Pb

is equal to 1 for this value (otherwise the approximation will be greater than one).

Example 13: We will use the upper bound approximation that was found for Pe in the previous

section. Using the two state code as in Example 9 we have

Pa
b,1 � P(e1,0) � 3p2 � 2p3,

Pa
b,2 � Pa

b,1� 2P(e1,0� e1,1� e2,0) � Pa
b,1� 4(1� p)3p2,

Pa
b,3 � Pa

b,2� 3P(e1,0� e1,1� e1,2� e2,0� e2,1� e3,0) � Pa
b,2� 3(1� p)4p3,

Pa
b,4 � Pa

b,3� 8(1� p)6p3.

The coefficient of p2 is the same as determined by the lower bound, i.e., 7. We plot Pa
b,N for N =

2 to 4 in Figure 4. We see that Pa
b,2 is closer to the simulation than the lower bound. This is opposite

to Pe where the lower bound approximation was closer than the upper bound.

The upper bound approximations for Pe given in (31), (32), and (34) can also be used for Pb,

with the appropriate coefficients to count the number of bits per error event. A slight modification
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of (34) was successfully used in [10] to find the best low rate convolutional codes for a concatenated

coding scheme.

Example 14: Again, we will use the tightest approximation as found in Example 11. Figure 5

plots the approximation for N = 2 to 4. We see that the approximation is very tight for p < 0.07 and

N = 2, becoming slightly looser for higher p.

V.  CONCLUSIONS

We have investigated the sequence, first event, event, and bit error probability of convolutional

codes. Using the two state code on a binary symmetric channel we have demonstrated many aspects,

some of them surprising, of the probability of error of convolutional codes.

Using Ps as a lower bound to Pe, the first coefficient (and perhaps the second) for the two state

code was exactly found. It was shown that a non–trivial lower bound for Pe could not be found using

the probability of a single event error (although it was shown that a lower bound could be found

for Pf). Tighter upper bounds that were better than the traditional union upper bound were

investigated. Using the two state code as an example, it was shown that we can easily tighten the

traditional upper bounds without a large increase in complexity (for both hard and soft decision

channels). A new lower bound for Pb has also been given.

It was found for the two state code that the lower bound approximation is closer to Pe than the

tightest upper bound. However, for Pb the situation reverses, with the upper bound approximation

being closer than the tightest lower bound. Since Pb is usually the desired parameter, the upper

bound approximation is a good indication of the code’s performance (if it can be determined).

Similarly to Pe, we can tighten the traditional upper bound to Pb very simply. These new

approximations could be used in code searches to find better codes than before, especially at higher

error ratios.
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Figure 1: Trellis for two state rate 1/2 convolutional code and N = 2.
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Figure 2: Probability of Event Error (lower bound approximation) 
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 3: Probability of Event Error (union bound approximation) 
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 4: Probability of Bit Error (upper bound approximation) 
versus p for two state rate 1/2 convolutional code on BSC.
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Figure 5: Probability of Bit Error (union bound approximation) 
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Figure Captions:

Figure 1: Trellis for two state rate 1/2 convolutional code and N = 2.

Figure 2: Probability of Event Error (lower bound approximation) versus p for two state rate 1/2

convolutional code on BSC.

Figure 3: Probability of Event Error (union bound approximation) versus p for two state rate 1/2

convolutional code on BSC.

Figure 4: Probability of Bit Error (upper bound approximation) versus p for two state rate 1/2

convolutional code on BSC.

Figure 5: Probability of Bit Error (union bound approximation) versus p for two state rate 1/2

convolutional code on BSC.
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