
131 March 2010 (Version 1.02)

Small World Communications TINSAT
Sensors/Controller/Transmitter

31 March 2010 (Version 1.02) Product Specification

TINSAT Features
� Pressure, temperature and humidity sensors
� Total of six A/D or four A/D and I2C
� ATmega328P microcontroller at 12.288 MHz
� Serial interface
� LED output
� 9 V input
� 1200 bit/s AFSK or 9600 bit/s FSK or GFSK

AX.25 packets
� 916.36 MHz ISM Band transmit frequency

(other frequencies available on request)
� Up to 20 mW transmit power
� Very small size 38.6x51.3 mm single board or

separate boards for sensors, controller and
transmitter

� Bootloader for Flash and EEPROM program-
ming using standard serial cable

Introduction
The TINSAT system consists of three separate

modules. The Sensor Module (SM) includes a
Freescale Semiconductor MPX4115A pressure
sensor, Microchip TC1047A temperature sensor
and Honeywell HIH–4000 humidity sensor. The
Controller Module (CM) includes an Atmel ATme-
ga328P 12.288 MHz microcontroller with serial
interface and a light emitting diode (LED). The
Transmitter Module (TM) includes an Analog De-
vices ADF7012 transmitter. The modules are
available separately, as one single printed circuit
board (PCB), as a SM/CM PCB or as a CM/TM
PCB. Figure 1 is a photo of the single PCB con-
figuration.

The heart of TINSAT is the CM. It typically ac-
cepts power from a 9V battery and provides ana-
logue to digital conversion of the analogue outputs
from the SM. The CM configures the TM and
transmits data from the CM to the TM. Data is
transmitted in AX.25 packets, either using 1200
bit/s AFSK or 9600 bit/s FSK or GFSK.

Sensor Module (SM)
The sensor specifications are listed in Table 1.

Please refer to the appropriate data sheets for
more detailed information. For the humidity sen-
sor, a calibration sheet is included to allow for
greater accuracy. The humidity sensor can also

Figure 1: Single board configuation (larger
than actual size).

be compensated for temperature changes. See
the HIH–4000 data sheet for further information.

Table 1: Sensor specifications

Sensor ADC Min
Range

Min
(V)

Max
Range

Max
(V)

Pressure 0 15 kPa 0.204 115 kPa 4.794

Temperature 1 –40 C 0.100 125 C 1.750

Humidity at
25 C

2 0 % 0.800 100 % 3.900

Table 2: Sensor Connector J1

Pin Signal I/O

1 VCC I

2 GND I/O

3 PRES O

4 TEMP O

5 HUMI O

OZESATSmall World Communications

231 March 2010 (Version 1.02)

There is a single 5–pin inline connector on the
SM with the connections given in Table 2. Pin 1 is
to the right of the PCB.

Table 3: ATmega328P Connections

Pin Name Pin
No.

Signal I/O

PB0/PCINT0/CLKO/ICP1 12 CLKO O

PB1/PCINT1/OC1A 13 TXDATA O

PB2/PCINT2/OC1B/SS_ 14 SS_ O

PB3/PCINT3/OC2A/MOSI 15 MOSI O

PB4/PCINT4/MISO 16 MISO I

PB5/PCINT5/SCK 17 SCK O

PB6/PCINT6/XTAL1/TOSC1 7 XTAL1 I

PB7/PCINT7/XTAL2/TOSC2 8 XTAL2 O

PC0/PCINT8/ADC0 23 PRES I

PC1/PCINT9/ADC1 24 TEMP I

PC2/PCINT10/ADC2 25 HUMI I

PC3/PCINT11/ADC3 26 PC3 I

PC4/PCINT12/ADC4/SDA 27 PC4 I

PC5/PCINT13/ADC5/SCL 28 PC5 I

PC6/PCINT14/RESET_ 29 RST_ I*

PD0/PCINT16/RXD 30 RXD I*

PD1/PCINT17/TXD 31 TXD O

PD2/PCINT18/INT0 32 NC I

PD3/PCINT19/INT1/OC2B 1 TXCLK_ I*

PD4/PCINT20/T0/XCK 2 NC I

PD5/PCINT21/T1/OC0B 9 LED O

PD6/PCINT22/AIN0/OC0A 10 NC I

PD7/PCINT23/AIN1 11 MUXOUT_ I*

ADC6 19 NC I

ADC7 22 NC I

* Requires internal pullup resistor

Controller Module (CM)
The controller module uses an ATmega328P

microcontroller with a 12.288 MHz crystal. A
78L05 linear voltage regulator is used to accept
input voltages from 7 to 20 V to produce a nominal
5 V supply. This typically allows a 9 V battery to
supply power to the CM. The ATmega328P pro-
vides up to 32kB of Flash memory, 2kB of RAM
and 1kB of EEPROM. The microcontroller also
has many other features of which the following are
nominally used:
* 8–bit Timer/Counter0 (for internal clock)
* 16–bit Timer/Counter1 (for 1200 bit/s AFSK and
9600 bit/s FSK)
* INT1 Interrupt (for 9600 bit/s GFSK)
* Master/Slave SPI (slave for programming AT-
mega328P and master for programming trans-

Figure 2: Serial Interface

10uF

4K7

VCC

TXD
PDTA143ET
4K7

LS4148

RXD

PUMH11
10K

RST_

10K
PUMH11

SOUT
1

2

3

4

5

NC

SIN

RST

GND

J3

mitter)
* Serial USART (for computer interface)
* 6–channel 10–bit ADC (two of the available eight
channels are not used)
* Crystal Oscillator XTAL1/XTAL2
* Clock output CLKO
* External reset RESET_
* Bootloader for Flash and EEPROM program-
ming. This uses 2KB of the available 32KB of
Flash memory.

The CM is used to interface to the SM and TM.
A serial interface and LED output are also pro-
vided. The connections to the ATmega328P are
listed in Table 3. For the pin name, the signal in
bold indicates which of the pin options are nomi-
nally being used. Note that RESET_, RXD,
TXCLK_ and MUXOUT_ inputs require the cor-
responding pullup resistors to be enabled within
the ATmega328P. An underscore after a signal
name indicates either an active low or inverted sig-
nal.

Figure 2 shows how the 5–pin serial interface
is connected to the ATmega328P. The interface
allows RS–232 level signals to be used. J3 can be
connected to a 9–pin serial cable as indicated in
Table 4. Pin 1 is to the top of the PCB, near the SM.

Table 4: 9–pin Serial Cable to Serial Interface

DB–9 Name DB–9 Pin Serial Name Serial Pin

DCD 1 NC 1

RXD 2 SOUT 2

TXD 3 SIN 3

DTR 4 RST 4

GND 5 GND 5

DSR 6 – –

RTS 7 – –

CTS 8 – –

RI 9 – –

OZESATSmall World Communications

331 March 2010 (Version 1.02)

When using the serial cable, RST (DTR) must
be kept low, otherwise the ATmega328P will reset.
Alternatively, DTR can be disconnected from the
connector. RST (DTR) is used with a bootloader
program in the ATmega328P in order to load pro-
grams via a serial cable.

A high efficiency green LED is available on the
CM. The circuit diagram is shown in Figure 3. The
LED uses 2 mA of current for a luminous intensity
of 2.3 mcd.

Figure 3: LED Circuit

1K5

LED

HLMP–1790

In order to program the ATmega328P, a stan-
dard 6–pin (2x3 configuration) SPI connector is
available using J5. Figure 4 shows the pin connec-
tions with pin 1 is to the right of the PCB. This al-
lows the Atmel AVRISPII in–system programmer
to be used.

Figure 4: SPI Programming Connector J5

MISO
SCK

RST_

VCC
MOSI
GND

1
3
5

2
4
6

Table 5 shows the connections for the 2–pin
battery connector J4, 8–pin connector to the ADC
inputs J2 (only pins one to five are used by the
SM), and 10–pin connector for the TM J6. Pin 1 is
to the right of the PCB for J4, J2 and J6.

Table 5: Battery, SM and TM connectors in CM
Pin J4 (battery) J2 (SM) J6 (TM)

1 VIN VCC VCC

2 GND GND GND

3 – PRES SCK

4 – TEMP MOSI

5 – HUMI SS_

6 – PC3 TXDATA

7 – PC4 MUXOUT_

8 – PC5 TXCLK_

9 – – GND

10 – – CLKO

To program the TM, the ATmega328P oper-
ates in SPI Master mode, using signals SCK,
MOSI and SS_. The transmitter is programmed to
have a centre frequency of 916.36 MHz, fre-
quency shift keying (FSK) or Gaussian FSK
(GFSK) modulation, �3 kHz frequency deviation

and a transmit power of 3 mW (the legal limit in
Australia for non frequency spread signals in the
ISM band). A 12.288 MHz clock is provided to the
TM using CLKO.

For 1200 bit/s AFSK (audio FSK), either 1200
Hz or 2200 Hz signals are sent via TXDATA. For
9600 bit/s FSK the data is sent directly to TXDA-
TA. A 0 or 1 on TXDATA will modulated the trans-
mitted signal with a frequency of 916.357 MHz or
916.363 MHz, respectively.

The transmitter can also be programmed for
GFSK, OOK (on off keying), GOOK (Gaussian
OOK) and ASK (amplitude shift keying). GFSK
and GOOK use less bandwidth than FSK and
OOK. For GFSK and GOOK, the TM generates a
clock on TXCLK_. On the rising edge of TXCLK_,
the next transmitted bit is sent via TXDATA. Note
that only certain data rates can be used. Other
transmit frequencies can also be programmed.

The MUXOUT_ signal indicates the status of
the ADF7012 chip in the TM. On powerup, this sig-
nal is high, indicating that the ADF7012 is not yet
ready to be programmed. When low, the
ADF7012 is ready to be programmed.

Transmitter Module (TM)
The TM uses an Analog Devices ADF7012

ISM transmitter. The device parameters are pro-
grammed using an SPI interface with the
ADF7012 acting as a slave. There are four 32–bit
registers that need to be programmed.

As the ADF7012 requires a 3.3 V power sup-
ply, a low dropout voltage regulator (Texas Instru-
ments TPS76433) is used to reduce the 5 V input
supply voltage to 3.3 V.

In order to meet the required CMOS voltage le-
vels between the 5 V level signals from the CM to
the 3.3 V signals in the TM, adaptor circuits are re-
quired. Figure 5 illustrates the adaptor circuits
used. The TM has a 10–pin SIL connector J7,
which is the same as J6 in the CM (see Table 5).
Pin 1 is to the right of the PCB.

Figure 5: TM Adaptor Circuits

MUXOUT_

PUMH11
10K

TXCLK_

10K
PUMH11

ADF7012

MUXOUT

5TXCLK

6

TXDATA

LE

DATA

CLK

OSC2

22K

33K
TXDATA

22K

33K
SS_

22K

33K
MOSI

22K

33K
SCK

CLKO

74LVC1G14

4

13

12

11

9

OZESATSmall World Communications

431 March 2010 (Version 1.02)

The loop filter in the transmitter was designed
for a centre frequency of 916.36 MHz, 9600 bit/s
GFSK, �3 kHz frequency deviation and 20 kHz
bandwidth. The circuit and values used in the loop
filter are shown in Figure 6. Other components
used in the VCO are also shown.

16

15

3

Figure 6: TM Loop Filter and VCO Components

ADF7012

CPOUTVCOIN18

12nF 180nF

91�

180�

5.6nF
CREG1

CREG2

CVCO

470nF1�F 22nF

2

24

17 L1

L2
1.5nH

RSET
3.6k� 23

In order to filter out the second and higher
order harmonics at the transmit frequency, a fifth
order low pass Chebyshev filter is used. The cir-
cuit used is shown in Figure 7. A 50 � matching
filter prior to the transmit filter is also shown. An
optional SMA connector J8 can be soldered to the
TM.

Figure 7: TM Matching and Transmit Filter

ADF7012
20

RFOUT

470pF

VDD

RFGND

SMA
8.2nH 8.2nH6.2nH

27nH

4.7pF 4.7pF6.8pF

19

J8

The TM can be programmed for other data
rates and transmit frequencies, however the com-
ponents shown in Figures 6 and 7 may need to be
changed. Transmit frequencies range from 75 to
1000 MHz with data rates from 0 to 179.2 kbit/s.
Transmit power can vary from –16 dBm (25 �W)
to 13 dBm (20 mW).

Mounting
The mounting holes for the SM, CM and TM

are shown in Figure 8. Alternatively, a single PCB
can be mounted with a board size of 38.6 by 51.3
mm.

Electrical Specifications
Sensor Module
Supply current: 10.6 mA (max)
Supply voltage: 4.85 V (min), 5.35 V (max)

Controller Module
Supply current: 32.4 mA (max)
Supply voltage (VIN): 7 V (min), 20 V (max)
Output voltage (VCC): 4.75 V (min), 5.25 V (max)

Figure 8: Mounting Holes

38.6

23
.0

32.0

16
.0

26.7

� = 3.2

3.
5

8.
6

19
.7

3.3

Sensors

Controller

Transmitter

4.3

Frequency (CLKO): 12.288 MHz

Transmitter Module
Supply current: 45.9 mA (max), 23.2 mA for 3 mA
VCO current and 3mW transmit power
Supply voltage (VCC): 3.6 V (min), 10 V (max)

Software
Included with TINSAT is a Pascal unit tin-

sat.mcl written for use with mikroPascal Pro for
AVR [1]. The basic program structure is:

program tinsat_test;
uses tinsat;
begin
 {Main program goes here}
end.

The following procedures and functions are avail-
able:

init_controller;
This procedure initialises the I/O port pins and en-
ables the A/D converter. It should be used only
once at the beginning of a program.

init_clock;
This procedure initialises the internal clock to use
Timer/Counter0. The clock period is specified by
the variable tic_period in ms (default value is
1000 or 1 s). Every tic_period ms, the Boolean
variable tic becomes true. If tic_period = 0,
then tic is always false. The maximum
tic_period is 65535 (65.535 s). For example,
to make the led toggle every 1 s (the constant

OZESATSmall World Communications

531 March 2010 (Version 1.02)

end_of_time is equal to false so the loop
never ends).

init_controller;
init_clock;
repeat
 if tic then
 begin{toggle LED}
 tic := false;
 led := led xor 1;
 end;{toggle LED}
until end_of_time;

If the clock is not being used, the following direc-
tive in tinsat.mpas should be undefined to reduce
code complexity. This can be achieved by deleting
the $ sign before DEFINE.

{$DEFINE do_clock}

wait_for_tic;
This procedure waits until tic becomes true and
then sets tic to be false. The above toggle LED
program can be written as

init_controller;
init_clock;
repeat
 wait_for_tic;
 led := 1;
 wait_for_tic;
 led := 0;
until end_of_time;

sample(sensor:byte):integer;
This function performs a 12–bit analogue to digital
conversion on one of the six ADC inputs. The out-
put is an integer. The input sensor is a byte
(0 to 5 selects inputs ADC0 to ADC5, respectively)
with the following available constants:

pressure = 0 = pressure sensor (ADC0)
temperature = 1 = temperature sensor (ADC1)
humidity = 2 = humidity sensor (ADC2)
ground = 14 = ground reference (0 V)
bandgap = 15 = bandgap voltage (1.1 V)

int2str(data:integer;
width:short):string[6];

This function converts an integer input data
into a string of length equal to the maximum of
width and the number of characters in the inte-
ger. The maximum length is equal to six. The
maximum value of data is 32767 and the mini-
mum value is –32768. For example

data_out := int2str(42,4);
 {outputs “ 42”}
data_out := int2str(42,0);
 {outputs “42”}
data_out := int2str(42,7);
 {outputs “ 42”}

char2str(character:char):string[1];
This function converts char input character
into a string of length one.

init_tx(rate:byte);
This procedure initialises the ADF7012 trans-
mitter. For rate = 0 1200 bit/s AFSK is selected.
Timer/Counter1 is set to operate in phase and fre-
quency correct pulse width modulation. For rate
= 1 9600 bit/s FSK is selected. Timer/Counter1 is
set to operate in clear timer on compare match
mode. For rate = 2 9600 bit/s GFSK is selected.
The TXCLK_ input from the ADF7012 input is
used to trigger an interrupt on the rising edge. The
ADF7012 is programmed to have a centre fre-
quency of 916.36 MHz, FSK modulation, a fre-

quency deviation of �3 kHz and a transmit power
of 3 mW. The following constants have been de-
fined for tx_rate

afsk1200 = 0 = 1200 bit/s AFSK
fsk9600 = 1 = 9600 bit/s FSK
gfsk9600 = 2 = 9600 bit/s GFSK

To reduce code complexity, the following program
directives can be used to enable one or more
modulation options in tinsat.mpas.

{$DEFINE do_afsk1200}
{$DEFINE do_fsk9600}
{$DEFINE do_gfsk9600}

The default setting in tinsat.mcl only has
do_afsk1200 defined, that is 9600 bit/s FSK or
GFSK are not implemented.

send_tx;
This procedure sends the length 230 string va-
riable data_out to the transmitter in an AX.25
packet. The length six string variables source,
destination, and via are used to indicate the
source, destination and via (relay) in the AX.25
packet, respectively. These variables are initia-
lised with the following values by init_tx:

source := ’TINSAT’;
destination := ’CQ’;

OZESATSmall World Communications

631 March 2010 (Version 1.02)

via := ’TELEM’;
data_out := ’’;

For example, to send a pressure sample at 1200
bit/s AFSK (note that a 12–bit sample has at most
four characters)

init_controller;
init_tx(afsk1200);
data_out := ’P = ’ +
 int2str(sample(pressure),4);
send_tx;

init_serial(baud:word);
This procedure initialises the USART0 serial re-
ceiver and transmitter with 8 data bits, no parity,
1 stop bit and no flow control. The input baud must
be equal to one of the following constant values.
The data rate is given by fosc/(16(baud+1))
where fosc = 12288000 (Hz) is the internal clock
frequency.

b1200 = 639 = 1200 bit/s
b2400 = 319 = 2400 bit/s
b4800 = 159 = 4800 bit/s
b9600 = 79 = 9600 bit/s
b14400 = 52 = 14491 bit/s (0.6% error)
b19200 = 39 = 19200 bit/s
b28800 = 25 = 29538 bit/s (2.6% error)
b38400 = 19 = 38400 bit/s
b57600 = 12 = 59077 bit/s (2.6% error)

serial_out;
This procedure sends the length 230 string vari-
able data_out to the TXD pin of the ATme-
ga328P. For example, to send a message at 9600
bit/s

init_controller;
init_serial(b9600);
data_out := ’Hello world’;
serial_out;

serial_in;
This procedure receives the char variable
data_in from the RXD pin of the ATmega328P.
Note that this procedure will continuously wait
until a character has been received. For example,
to echo a received character

init_controller;
init_serial(b9600);
repeat
 serial_in;
 data_out := char2str(data_in);

 serial_out;
until end_of_time;

Bootloader
In order to program the controller using a serial

cable, a bootloader is programmed into the ATme-
ga328P. This uses the upper 2KB of the 32KB
Flash memory available. In order to enter the
bootloader program the following procedure
should be used

1) Reset ATmega328P by forcing DTR high for 1
ms.
2) Wait 10 ms to allow the ATmega328P to confi-
gure itself and jump to the bootloader section.
3) Send the single character command “P” (with-
out the quotes) in ASCII within 100 ms to SIN
(TXD).

The serial port should be configured for 57,600
bit/s, no parity and one stop bit. If “P” is not re-
ceived within 100 ms, the bootloader will reset any
registers that were used and jump to the beginning
of the application section (address 0000 in hexa-
decimal).

If “P” was successfully received by the boot-
loader it will send a carriage return (CR or 0D in
hexadecimal) to SOUT (RXD). The following com-
mands can then be sent to the bootloader:

“B” 2*dd “F” 128*dd
Performs a block Flash erase and load of 128
bytes (64 words) from the two byte address. If the
command was successfully received, a CR will be
returned. The address and data are sent low byte
first. The byte address must have the seven least
significant bits equal to zero.

“B” 2*dd “E” 16*dd
Performs a block EEPROM erase and load of 16
bytes from the two byte address. If the command
was successfully received, a CR will be returned.
The address and data are sent low byte first.

“g” 2*dd “F”
Performs a block Flash read of 128 bytes (64
words) from the two byte address. The address
and data are sent low byte first. The byte address
must have the seven least significant bits equal to
zero.

“g” 2*dd “E”
Performs a block EEPROM read of 16 bytes from
the two byte address. The address and data are
sent low byte first.

OZESATSmall World Communications

731 March 2010 (Version 1.02)

“s”
Reads the three device signature bytes, low byte
first. For the ATmega328P this is 1E, 95 and 0F in
hexadecimal, low byte first.

“V”
Reads the two bootloader version number bytes,
low byte first. For the current version, this is 00
and 00 in hexadecimal, low byte first.

“E”
Exits the bootloader and jumps to the application
section. If the command was successfully re-
ceived, a CR will be returned.

If an invalid command is sent to the bootloader,
the character “?” is sent to SOUT. For commands
longer than one character, each of the following
characters must be sent within 100 ms of each
other. Otherwise, the command sequence is con-
sidered to have ended and a “?” will be sent.

Tinsatcom
In order to program the CM from a computer,

the tinsatcom 32–bit DOS software is provided.
This is a console program written for the Windows
operating system. It allows hexfiles generated by
various AVR compilers to be selected and down-
loaded into the CM via a serial cable using the
bootloader in the CM. Support for both Flash and
EEPROM hexfiles are provided. The following
commands are used for programming the Flash
and EEPROM.

c = COM serial port. Most computers have two
serial ports with 9–pin D–type connectors. The de-
fault port is COM1. Other port numbers can be se-
lected if desired.

d = Hexfile directory. This is where the Flash and
EEPROM hexfiles are located. The default direc-
tory is the same directory as tinsatcom.exe, ex-
pressed as “.” without the quotes. If the full path is
not given, for example “c:\tinsat”, then the location
is relative to the tinsatcom directory. Thus, lo-
cations such as “../tinsat_test” can be used. If
there are spaces in the directory names, do not
use ” at the beginning or end of the directory
name. This will cause an error. For example
“/tinsat test” without the quotes is a valid directory
name.

f = Flash hexfile name. This is the file name of the
Flash hexfile. The file name should have the “.hex”

extension, e.g., “tinsat_test.hex” without the
quotes. There should be no space or ” characters
in the file name.

F = Program Flash. Entering this command will
cause the selected Flash hexfile to be down-
loaded into the CM. The software causes the CM
to enter the bootloader and uses the bootloader
commands to first check the CM signature and
bootloader version number. The hexfile is then
written and checked one page (64 words or 128
bytes) at a time, before finally exiting the bootload-
er. While programming a “.” is displayed for each
page programmed. If there are any errors during
programming, programming will stop and an error
message is displayed. The default bootloader
configuration of 57,600 bit/s, 8–bit wordsize, one
stop bit and no parity is used.

e = EEPROM hexfile name. This is the file name
of the EEPROM hexfile. This command is similar
to the f command.

E = Program EEPROM. Entering this command
will cause the selected EEPROM hexfile to be
downloaded into the CM. The operation is similar
to the F command, except that pages are 16 bytes
long.

The program can also be used as a standard
USART terminal. It has two models of operation,
Receive Only and Interactive. Receive only mode
allows the computer to continuously display char-
acters sent from the CM. Interactive mode allows
a user to send commands to the CM and display
its response.

In Receive Only mode, the computer waits for
8–bit ASCII characters to be sent from the CM. If
characters are sent from the CM, they are stored
into a buffer of length 80. If no further characters
are received in 100 ms or the buffer is full, the
characters are output to the screen. To quit re-
ceive only mode, press ctrl–Q.

In Interactive mode, a prompt “> ” is displayed
waiting for characters to be input. Press “Enter” on
the keyboard to send the characters to the CM.
tinsatcom will then wait for up to 100 ms for a reply
from the CM. If no reply is received, the prompt is
redisplayed with an error message. If characters
are sent from the CM, they are stored into a buffer
of length 80. If no further characters are received
in 100 ms or the buffer is full, the characters are
output to the screen and the prompt redisplayed.
To quit interactive mode, enter ctrl–Q after the

OZESATSmall World Communications

831 March 2010 (Version 1.02)

prompt. The character ctrl–Q appears as � on the
screen.

The following commands are used by the
USART.

b = Baud rate. This selects the baud rate to be
used. The default rate is 9600 bit/s. Depending on
your particular computer, valid rates are 110, 300,
600, 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, 128000 and 256000 bit/s.

w = Word size. This is the number of data bits in
each word transmitted. The default size is 8–bits.
Valid wordsizes are 5, 6, 7 and 8 bits.

p = Parity. This checks if there are an odd number
of errors in the data and parity bits (an even
number of errors can not be detected). Valid
selections are N for no parity bit, E for an even
parity bit and O for an odd parity bit). The default
parity is none.

s = Stop bits. This is the number of bits used to in-
dicated the end of the word. Valid stop bits are 1
and 2. The default number is 1 stop bit.

i = Interactive. This puts the USART into interac-
tive mode. Enter ctrl–Q to quit.

r = Receive only. This puts the USART into receive
only mode. Press ctrl–Q to quit.

Other commands used are

h = Display help menu.
a = Display advanced help menu.
x = Exit tinsatcom.

When tinsatcom is first run it creates the initial-
isation file tinsatcom.ini (with the default param-
eters) in the same directory as tinsatcom.exe. Up-
dated parameters are stored in this file, which are
read the next time tinsatcom is run.

Fuse Bits
In order for the CM to function correctly, the

Fuse Low Byte in the ATmega328P is pro-
grammed as 10101111 in binary or AF in hexade-
cimal. This corresponds to the following settings
(fuse bits are active low):

Bit 7: CKDIV8 = 1 (Divide clock by 8 off)
Bit 6: CKOUT = 0 (Clock output on)
Bits 5..4: SUT[1:0] = 2 (Crystal oscillator, fast ris-
ing power)

Bits 3..0: CKSEL[3:0] = 15 (Low power crystal os-
cillator, 8.0–16.0 MHz frequency range)

As a bootloader is being used, the Fuse High
Byte in the ATmega328P is programmed as
11011010 in binary or DA in hexadecimal. This
corresponds to the following settings:

Bit 7: RSTDISBL = 1 (External reset disable off)
Bit 6: DWEN = 1 (dbugWIRE off)
Bit 5: SPIEN = 0 (SPI programming on)
Bit 4: WDTON = 1 (Watchdog timer off)
Bit 3: EESAVE = 1 (Preserve EEPROM on chip
erase off)
Bits 2..1: BOOTSZ[1:0] = 1 (Boot size = 2048
bytes)
Bit 0: BOOTRST = 0 (Bootloader reset vector on)

In order to protect the bootloader against inad-
vertent writes using the SPM instruction, the Lock
Bit Byte is programmed as 11101111 in binary or
EF in hexadecimal. This corresponds to the fol-
lowing settings:

Bits 7..6: 3 (Not used)
Bits 5..4: BLB1[2:1] = 2 (SPM is not allowed to
write to the bootloader section)
Bits 3..2: BLB0[2:1] = 3 (no restrictions for SPM
and LPM in application section)
Bits 1..0: LB[2:1] = 3 (no memory lock features en-
abled)

The Extended Fuse Byte is left in its default
setting of FF in hexadecimal.

Ordering Information
The order code is SW–TINSAT–sctpc–n

s = S for sensor module
c = C for controller module
t = T for transmitter module
p = P for single PCB
c = C for SMA connector
n = number of systems

If you need a custom solution for your application,
please contact us for a quote.

References
[1] mikroElektronica, “mikroPascal Pro for

AVR,” V1.50, http://www.mikroe.com/en/
compilers/mikropascal/avr/

Small World Communications does not as-
sume any liability arising out of the application or

OZESATSmall World Communications

931 March 2010 (Version 1.02)

use of any product described or shown herein; nor
does it convey any license under its copyrights or
any rights of others. Small World Communica-
tions reserves the right to make changes, at any
time, in order to improve performance, function or
design and to supply the best product possible.
Small World Communications will not assume re-
sponsibility for the use of any circuitry described
herein. Small World Communications does not re-
present that devices shown or products described
herein are free from patent infringement or from
any other third party right. Small World Communi-
cations assumes no obligation to correct any er-
rors contained herein or to advise any user of this

text of any correction if such be made. Small
World Communications will not assume any liabili-
ty for the accuracy or correctness of any engineer-
ing or software support or assistance provided to
a user.

� 2010 Small World Communications. All
Rights Reserved. All trademarks and registered
trademarks are the property of their respective
owners.

Small World Communications, 6 First Avenue,
Payneham South SA 5070, Australia.
info@sworld.com.au ph. +61 8 8332 0319
http://www.sworld.com.au fax +61 8 7117 1416

